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Abstract. Motivated by a study of weak geodesics on the space of Kähler metrics, we study local
analytic analogies of weak geodesics on a space of certain class of plurisubharmonic functions.
We shall propose a condition using multiplier ideal sheaves to connect with a starting point by a
weak geodesic.

1. Introduction

For two plurisubharmonic functions (for short psh functions) u0 and u1, we can define the
weak geodesic {ut}t∈(0,1) joining u0 and u1. A weak geodesic measures the difference between
singularities of u0 and u1, In general, the weak geodesic {ut} may be discontinuous at the start
point, that is limt→0 ut does not equal u0. The property limt→0 ut = u0 means that u0 has worse
singularities than u1 in some sense. Our interest is to analyze the behavior of weak geodesics
and psh functions. In this paper, we shall propose some equivalent conditions to limt→0 ut = u0

in some class of psh functions.
Now we state our results. Let B be the unit ball in Cn. We will denote by P(B) the set of

non-positive psh functions ϕ on B such that limz→∂B ϕ(z) = 0. In these notations, we investigate
relationships between a multiplier ideal sheaf and a Kiselman-Lelong number νK(φ, 0, y) which
is like a Lelong number at the origin in the direction toward y ∈ Rn

>0 (see Definiton 4.1).

Theorem 1.1. Let φ, ψ ∈ P(B). If J(mφ) ⊂ J(mψ) for any m ∈ Z>0, then νK(φ, 0, y) ≥
νK(ψ, 0, y) for any y ∈ Rn

>0.

Combining Theorem 1.1, [Gue] and [Hos], we have

Corollary 1.2. Let u0 and u1 be toric psh functions on the unit ball B in Cn and let ut be the
weak geodesic joining u0 and u1. Assume that u−1

i (−∞) ⊂ {0} and limz→∂B ui(z) = 0 for i = 0, 1.
Then the following are equivalent.

(1) limt→0 ut = u0 in capacity.
(2) νK(u0, 0, y) ≥ νK(u1, 0, y) for any y ∈ Rn

>0.
(3) J(mu0) ⊂ J(mu1) for any m ∈ Z>0.
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The equivalence between (1) and (2) was known by Hosono [Hos]. Our contribution is the
equivalence between (2) and (3). It is easy to see that a toric psh function in Corollary 1.2 is a
member of P(B).

Next, we investigate weak geodesics in the case psh functions have tame singularities intro-
duced in [BFJ] (see Definition 5.1).

Theorem 1.3. Let u0 , u1 ∈ P(B) and let ut be the weak geodesic joining u0 and u1. We assume
u1 has tame singularities. Then the following are equivalent.

(1) limt→0 ut = u0 in capacity.
(2) J(mu0) ⊂ J(mu1) for any m ∈ Z>0.

This work was intended as an attempt to motivate [Ras] and [Hos]. In these papers, weak
geodesics joining two psh functions on a pseudoconvex domain were studied. Rashkovskii
[Ras] proved that if u0 and u1 have finite energy then limt→0 ut = u0 and limt→1 ut = u1 holds.
Hosono [Hos] proposed an example that limt→0 ut does not equal u0 and an equivalent condition
to limt→0 ut = u0 for toric psh functions. Our motivation is to clearify when limt→0 ut = u0 holds.

Here is a brief history of weak geodesics. The origin is due to Mabuchi [Mab], in which he
defined a metric on the space H of Kähler metrics. After that, Donaldoson [Don] and Semmes
[Sem] proved that the geodesic equation onH can be written as a homogeneous complex Monge
Ampére equation. In general, a smooth geodesic may not necessarily exists. But as shown by
Chen [Chen], there exists a certain weak geodesic connecting points of H . Weak geodesics on
H are related to a test configulation, a Kähler-Einstein metric and so on. For more details of
geodesics on H , we refer the reader to [PSS]. In [Dar], Darvas generalized the notion of weak
geodesics on the space of quasi-psh functions in a Kähler comology class. These weak geodesics
are introduced as the upper envelop of the family of some quasi-psh functions. Recently Darvas,
DiNezza and Lu [DDNL] introduced a notion of weak geodesics in a big cohomology class, and
solved the question in [DGZ].

The organization of the paper is as follows. In section §2, we introduce the notion of a weak
geodesic same as [Dar]. In section §3, we show that the condition on multiplier ideal sheaves
in Theorem 1.1 leads to some inequality of m-th Bergman approximations, which are approxi-
mations of a psh function by using Hilbert space of L2 integrable functions with the psh weight.
This inequality is the key to prove Corollary 1.2 and Theorem 1.3. In section §4, we give a
generalization of Demailly’s m-th Bergman approximation of psh functions. We investigate re-
lationships between Kiselman-Lelong number and Bergman approximation by the same method
as [Dem12, Chapter14]. In section §5, we introduce tame singularities and show that Theorem
1.3.
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2. Weak geodesics joining psh function

Let Ω be a bounded pseudoconvex domain containing the origin in Cn. We will denote by
PS H(Ω) the set of psh functions in Ω. In this section we introduce the notion of weak geodesics
joining psh functions, following [Dar], [Ras]. We follow the notation of [Ras, Chapter 3].

Let S be the annulus {ζ ∈ C | 0 < log |ζ | < 1}. Given two functions u0, u1 ∈ PS H(Ω), consider
a set of psh functions W(u0, u1) defined as follows;

W(u0, u1) B {r ∈ PS H(Ω × S ) | r ≤ 0, lim sup
log |ζ |→0

r(z, ζ) ≤ u0, lim sup
log |ζ |→1

r(z, ζ) ≤ u1}.

The class is not empty since u0 + u1 is a member of W(u0, u1). We let ũ be the pointwise supre-
mum of all the functions in W(u0, u1). Since ũ∗ is a member of W(u0, u1) (∗ means upper-semi-
continuous regularization), ũ is a psh function on Ω × S .

Definition 2.1. The weak geodesic {ut} joining u0 and u1 is a family of functions ut(z) B ũ(z, et)
∈ W(u0, u1) for each t ∈ (0, 1)

On the other hand, given two functions u0, u1 ∈ PS H(Ω), we define the envelope by

P[u1](u0) B
(
sup{r ∈ PS H(Ω) | r ≤ u0, r ≤ u1 + O(1)}

)∗
.

The next result gives a relationship between the weak geodesic and the envelope.

Theorem 2.2 ([Dar], [Hos]). Let ut be the weak geodesic joining u0 and u1. Then limt→0 ut = u0

in capacity if and only if P[u1](u0) = u0.

Note that the Monge-Ampére capacity of a Borel set E ⊂ Ω is defined by the formula

Cap(E) = sup
{∫

E
(ddcr)n | r ∈ PS H(Ω),−1 ≤ r ≤ 0

}
.

For a sequence {vi} ⊂ PS H(Ω), we say that limi→∞ vi = v ∈ PS H(Ω) in capacity if for any ε > 0
we have

lim
i→∞

Cap({x ∈ Ω | |vi − v| > ε}) = 0.

3. Key lemma

Definition 3.1. Let u be a psh function on Ω. For any positive integer m, let um be given

um(z) B
1

2m
log sup

‖ f ‖mu≤1
| f |2(z).
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Here, ‖ f ‖mu B
∫

Ω
| f |2e−2mudV and dV B

√
−1n

2nn! dz1dz1 · · · dzndzn. we call um a m-th Bergman
approximation of u.

For any u ∈ P(B), we will denote by Gu the space of holomorphic functions f on B such that
‖ f ‖u < ∞. We consider the evaluation map π : Gu⊗OB → OB and defineHu B Im(π). We obtain
the following proposition by [Dem12, Proposition 5.7].

Proposition 3.2. Hu = J(u) holds on B for any u ∈ P(B).

Now we prove the following key lemma.

Lemma 3.3. Fix m ∈ Z>0 and u, v ∈ P(B). Let um (resp. vm) be m-th Bergman approximations
of u (resp. v). IfJ(mu) ⊂ J(mv), then there exists a positive number Mm such that um ≤ vm + Mm

Proof. The proof will be divided into three steps.
§1 We prove that ‖ f ‖mv < ∞ for all holomorphic function f on B such that ‖ f ‖mu ≤ 1. By

considering a germ of f at an origin o, we obtain fo ∈ J(mu)o ⊂ J(mv)o. By Propositon 3.2,
there exists a holomorphic function F on B such that Fo = fo and ‖F‖mv < ∞. Since f is
holomorphic on B and F = f near o, we obtain F = f on B by the identity theorem. Therefore
we obtain ‖ f ‖mv < ∞.
§2 We show that there exists a real number M such that ‖ f ‖mv < M for all holomorphic

function f on B such that ‖ f ‖mu ≤ 1. Suppose it were false. Then we could find fi for all positive
natural number i such that ‖ fi‖mu ≤ 1 and ‖ fi‖mv > i. We set F B { f ∈ O(B) | ‖ f ‖mu ≤ 1}. Since
F is uniform bounded on compact subsets, F is normal family by Montel’s theorem. Therefore,
there exist F ∈ F and a subsequence { fik} such that fik → F by uniform converge on compact
subsets. That ‖F‖mv < ∞ follows from F ∈ F . This contradicts our assumption the fact that
‖F‖mv ≥ lim infk ‖ fik‖mv ≥ ∞.
§3 We finish proof. For f ∈ F ,

1
2m

log(| f |2/‖ f ‖2mv) ≤
1

2m
log sup

‖g‖mv≤1
|g|2 = vm.

Then we put Mm B
1
m log M,

1
2m

log(| f |2) ≤ vm +
1

2m
log ‖ f ‖2mv ≤ vm +

1
m

log M.

Therefore, we take supremum for f , which proves the lemma. �
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4. Kiselman Lelong number and Bergman approximation

Definition 4.1 ([Kis] Definition 5.1 and [Dem] Chapter 3). Let ϕ ∈ PS H(Ω) and y ∈ Rn
>0.

Then we define the positive constant to be

νK(ϕ, 0, y) B lim
t→−∞

1
t

sup
|zi |≤1

ϕ(z1ety1 , . . . , znetyn).

We call νK(ϕ, 0, y) Kiselman-Lelong number with coefficients y at the origin.

Lemma 4.2. Let ϕ ∈ PS H(Ω), and r1, r2 . . . rn be positive real numbers with {|zi| ≤ 2ri} ⊂ Ω.
Then there exists a constant C independent of m satisfying:

(4.1) ϕ(w) −
C
m
≤ ϕm(w) ≤ sup

|ζi−wi |≤ri

ϕ(ζ) −
1

2m
log(πnr2

1 · · · r
2
n/n!)

for all w ∈ {|zi| ≤ ri}. Here, ϕm is the m-th Bergman approximation of ϕ.

Proof. In [Dem12, Chapter 14], ϕ(w) − C
m ≤ ϕm(w) is already proved. Thus we need only to

show the right hand inequality.
We fix m. By definition of ϕm, we have

ϕm =
1

2m
log sup

‖ f ‖mϕ≤1
| f |2 = sup

‖ f ‖mϕ≤1

1
2m

log | f |2.

Here ‖ f ‖mϕ =
∫

Ω
| f |2e−2mϕdV .

We fix a holomorphic function f on Ω satisfying ‖ f ‖mϕ ≤ 1. Since log | f |2 is psh, we apply
submean value inequality to each variable,

log | f |2(w1, . . . ,wn) ≤

√
−1

2πr2
1

∫
|ζ1−w1 |≤r1

log | f |2(ζ1, 0, . . . , 0)dζ1dζ1

≤ · · ·

≤

√
−1n

2nπnr2
1 · · · r

2
n

∫
|ζi−wi |≤ri

log | f |2(ζ1, ζ2, . . . , ζn)dζ1dζ1 · · · dζndζn

=
n!

πnr2
1 · · · r

2
n

∫
|ζi−wi |≤ri

log | f |2(ζ)dV.

(4.2)

Since log is a concave function, by Jensen inequality,

n!
πnr2

1 · · · r
2
n

∫
|ζi−wi |≤ri

log | f |2(ζ)dV ≤ log
(

n!
πnr2

1 · · · r
2
n

∫
|ζi−wi |≤ri

| f |2(ζ)dV
)

= log
(∫
|ζi−wi |≤ri

| f |2(ζ)dV
)

+ log
n!

πnr2
1 · · · r

2
n
.

(4.3)
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Therefore from ‖ f ‖mϕ =
∫

Ω
| f |2e−2mϕdV ≤ 1, we have

log
(∫
|ζi−wi |≤ri

| f |2(ζ)dV
)
≤ log

(∫
|ζi−wi |≤ri

| f |2e−2mϕ(ζ)dV
)

+ sup
|ζi−wi |≤ri

2mϕ(ζ)

≤ log
(∫

Ω

| f |2e−2mϕdV
)

+ sup
|ζi−wi |≤ri

2mϕ(ζ)

≤ 2m sup
|ζi−wi |≤ri

ϕ(ζ).

(4.4)

We thus get

ϕm(w) = sup
‖ f ‖mϕ≤1

1
2m

log | f |2(w)

≤ sup
‖ f ‖mϕ≤1

1
2m

log
(∫
|ζi−wi |≤ri

| f |2(ζ)dV
)

+
1

2m
log

n!
πnr2

1 · · · r
2
n

≤ sup
|ζi−wi |≤ri

ϕ(ζ) −
1

2m
log(πnr2

1 · · · r
2
n/n!).

(4.5)

�

Corollary 4.3. Under the same asuumption in Lemma 4.2, for all y ∈ Rn
>0,

(4.6) νK(ϕ, 0, y) ≥ νK(ϕm, 0, y) ≥ νK(ϕ, 0, y) −
y1 + · · · + yn

m

holds. In particular, limm→∞ ν
K(ϕm, 0, y) = νK(ϕ, 0, y).

Proof. By Lemma 4.2, if we take supremum on w ∈ {|zi| ≤ ri}, we have

(4.7) sup
|wi |≤ri

ϕ(w) −
C
m
≤ sup
|wi |≤ri

ϕm(w) ≤ sup
|wi |≤2ri

ϕ(ζ) −
log r1 · · · rn

m
−

1
2m

log(πn/n!).

Therefore if we take t < 0, put ri = etyi and multiply 1/t, we have

(4.8)
1
t

sup
|wi |≤etyi

ϕ(w) −
C
mt
≥

1
t

sup
|wi |≤etyi

ϕm(w) ≥
1
t

sup
|wi |≤2etyi

ϕ(ζ) −
ty1 + · · · + tyn

mt
−

1
2mt

log(πn/n!).

Therefore we take the limit for t → −∞,

νK(ϕ, 0, y) ≥ νK(ϕm, 0, y) ≥ νK(ϕ, 0, y) −
y1 + · · · + yn

m
.

�

Theorem 4.4 (= Theorem 1.1). Let φ, ψ ∈ P(B). If J(mφ) ⊂ J(mψ) for any m ∈ Z>0, then
νK(φ, 0, y) ≥ νK(ψ, 0, y) for any y ∈ Rn

>0.
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Proof. Fix y ∈ Rn
>0. Since J(mφ) ⊂ J(mψ) for any m ∈ Z>0, by Lemma 3.3,

νK(φm, 0, y) ≥ νK(ψm, 0, y).

Therefore by Corollary 4.3, by taking the limit m→ ∞, we have

νK(φ, 0, y) ≥ νK(ψ, 0, y).

�

Corollary 4.5 (=Corollary 1.2). Let u0 and u1 be toric psh functions on the unit ball B in Cn

and let ut be the weak geodesic joining u0 and u1. Then the following are equivalent.

(1) limt→0 ut = u0 in capacity.
(2) νK(u0, 0, y) ≥ νK(u1, 0, y) for any y ∈ Rn

>0.
(3) J(mu0) ⊂ J(mu1) for any m ∈ Z>0.

Proof. The equivalence between (1) and (2) was known by Hosono [Hos]. From Theorem 1.1,
(3) implies (2), thus we only need to show that (2) implies (3). It is easy to check that according
to [Gue, Theorem 1.20], J(u0) is monomial and

za1
1 za2

2 · · · z
an
n ∈ J(u0)⇐⇒ sup

y∈Rn
>0

νK(u0, 0, y)
νK(za1

1 za2
2 · · · z

an
n , 0, y) +

∑n
i=1 aiyi

< 1.

�

5. Tame sinularity and weak geodesics

Definition 5.1 ([BFJ] section 5.3). We say that u ∈ PS H(B) has tame singularities with
coefficient c > 0, if

u + O(1) ≤ um ≤ (1 − c/m)u + O(1)

holds, where the O(1) term is independent of m.

Remark 5.2. According to [BFJ, Lemma 5.10], if u is exponential α-holder for some α > 0
(i.e. eu is α-hölder continuous), then u has tame singularities. In paticular, if u has algebraic
singularities (i.e. u is written as sum of C∞function and log | f | for some holomorphic function f
), then u has tame singularities.

Theorem 5.3 (=Theorem 1.3). Let u0, u1 ∈ P(B) and let ut be a weak geodesic joining u0 and
u1. We assume u1 has tame singularities. Then the following are equivalent.

(1) limt→0 ut = u0 in capacity.
(2) J(mu0) ⊂ J(mu1) for any m ∈ Z>0.
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Proof. By Theorem 2.2, it suffices to prove that the equivalence between P[u1](u0) = u0 and
J(mu0) ⊂ J(mu1) for any m ∈ Z>0.

We assume P[u1](u0) = u0. We need only consider J(u0) ⊂ J(u1) since P[mu1](mu0) =

mP[u1](u0). By the strong openness property of a multiplier ideal sheaf by Guan and Zhou [GZ],
we can take a large positive number C such that J(u0) = J(P[u1](u0)) = J(P(u0, u1 + C)). By
definition P(u0, u1 + C) ≤ u1 + C, therefore J(u0) = J(P(u0, u1 + C)) ⊂ J(u1).

Conversely, we assume J(mu0) ⊂ J(mu1) for any m ∈ Z>0. We will denote ui,m by the m-
th Bergman approximation of ui for i = 0, 1. By Demailly’s approximation theorem [Dem12,
Chapter 14], there exists a positive number C1 independent of m such that u0 −

C1
m ≤ u0,m. From

Lemma 3.3, we obtain u0 ≤ u1,m + O(1). It follows that P[u1,m](u0) = u0.
Since u1 has tame singularities, u1,m ≤ (1− c

m )u1 +O(1) for all m ∈ Z>0. For all positive number
C and all r ∈ PS H(B) satisfying r ≤ min(u0, u1,m + C),

r +
c
m

u1 ≤ u0, r +
c
m

u1 ≤ u1 + C + O(1).

By the definition of P[u1](u0), we have r + c
mu1 ≤ P[u1](u0). Thus we take supremum for r and

C, P[u1,m](u0) + c
mu1 ≤ P[u1](u0) holds. Since P[u1,m](u0) = u0, it follows that u0 + c

mu1 ≤ P[u1](u0).
Consequencely we can take the limit for m outside the origin, we have u0 ≤ P[u1](u0) on B r {0}.
On the other hand, P[u1](u0) ≤ u0 by definition. Hence we have u0 = P[u1](u0) on B r {0}. From
Lemma 5.4 as below, we get u0 = P[u1](u0). �

Lemma 5.4 ([Gun] Chapter A). Let u, v ∈ PS H(Ω). If u = v almost everywhere with respect to
Lesbegue measure, then u = v on Ω.

Proof. First, we show that

(5.1) u(a) = lim
ε→0

1
vol(B(a, ε))

∫
B(a,ε)

u(z)dV

Since u is an upper-semi-continuous function, we have

u(a) = lim sup
z→a

u(z)

= lim
ε→0

sup
z∈B(a,ε)

u(z)

≥ lim
ε→0

1
vol(B(a, ε))

∫
B(a,ε)

u(z)dV.

(5.2)

On the other hand, according to the submean value inequality,

(5.3) u(a) ≤ lim
ε→0

1
vol(B(a, ε))

∫
B(a,ε)

u(z)dV.

We thus get (5.1).
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Applying (5.1),

u(a) = lim
ε→0

1
vol(B(a, ε))

∫
B(a,ε)

u(z)dV

= lim
ε→0

1
vol(B(a, ε))

∫
B(a,ε)

v(z)dV

= v(a).

(5.4)

�
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