MULTIPLIER IDEAL SHEAVES AND LOCAL GEODESICS FOR PLURISUBHARMONIC FUNCTIONS

MASATAKA IWAI

ABSTRACT. Motivated by a study of weak geodesics on the space of Kähler metrics, we study local analytic analogies of weak geodesics on a space of certain class of plurisubharmonic functions. We shall propose a condition using multiplier ideal sheaves to connect with a starting point by a weak geodesic.

1. Introduction

For two plurisubharmonic functions (for short psh functions) u_0 and u_1, we can define the weak geodesic $\{u_t\}_{t \in (0,1)}$ joining u_0 and u_1. A weak geodesic measures the difference between singularities of u_0 and u_1. In general, the weak geodesic $\{u_t\}$ may be discontinuous at the start point, that is $\lim_{t \to 0} u_t$ does not equal u_0. The property $\lim_{t \to 0} u_t = u_0$ means that u_0 has worse singularities than u_1 in some sense. Our interest is to analyze the behavior of weak geodesics and psh functions. In this paper, we shall propose some equivalent conditions to $\lim_{t \to 0} u_t = u_0$ in some class of psh functions.

Now we state our results. Let B be the unit ball in \mathbb{C}^n. We will denote by $\mathcal{P}(B)$ the set of non-positive psh functions φ on B such that $\lim_{z \to \partial B} \varphi(z) = 0$. In these notations, we investigate relationships between a multiplier ideal sheaf and a Kiselman-Lelong number $\nu^K(\varphi,0,y)$ which is like a Lelong number at the origin in the direction toward $y \in \mathbb{R}^n_>$ (see Definition 4.1).

Theorem 1.1. Let $\phi, \psi \in \mathcal{P}(B)$. If $\mathcal{J}(m\phi) \subset \mathcal{J}(m\psi)$ for any $m \in \mathbb{Z}_{>0}$, then $\nu^K(\phi,0,y) \geq \nu^K(\psi,0,y)$ for any $y \in \mathbb{R}^n_>$.

Combining Theorem 1.1, [Gue] and [Hos], we have

Corollary 1.2. Let u_0 and u_1 be toric psh functions on the unit ball B in \mathbb{C}^n and let u_i be the weak geodesic joining u_0 and u_1. Assume that $u_i^{-1}(-\infty) \subset \{0\}$ and $\lim_{z \to \partial B} u_i(z) = 0$ for $i = 0, 1$. Then the following are equivalent.

1. $\lim_{t \to 0} u_t = u_0$ in capacity.
2. $\nu^K(u_0,0,y) \geq \nu^K(u_1,0,y)$ for any $y \in \mathbb{R}^n_>$.
3. $\mathcal{J}(mu_0) \subset \mathcal{J}(mu_1)$ for any $m \in \mathbb{Z}_{>0}$.

1
The equivalence between (1) and (2) was known by Hosono [Hos]. Our contribution is the equivalence between (2) and (3). It is easy to see that a toric psh function in Corollary 1.2 is a member of $\mathcal{P}(B)$.

Next, we investigate weak geodesics in the case psh functions have tame singularities introduced in [BFJ] (see Definition 5.1).

Theorem 1.3. Let $u_0, u_1 \in \mathcal{P}(B)$ and let u_t be the weak geodesic joining u_0 and u_1. We assume u_1 has tame singularities. Then the following are equivalent.

1. $\lim_{t \to 0} u_t = u_0$ in capacity.
2. $\mathcal{J}(mu_0) \subset \mathcal{J}(mu_1)$ for any $m \in \mathbb{Z}_{>0}$.

This work was intended as an attempt to motivate [Ras] and [Hos]. In these papers, weak geodesics joining two psh functions on a pseudoconvex domain were studied. Rashkovskii [Ras] proved that if u_0 and u_1 have finite energy then $\lim_{t \to 0} u_t = u_0$ and $\lim_{t \to 1} u_t = u_1$ holds. Hosono [Hos] proposed an example that $\lim_{t \to 0} u_t$ does not equal u_0 and an equivalent condition to $\lim_{t \to 0} u_t = u_0$ for toric psh functions. Our motivation is to clarify when $\lim_{t \to 0} u_t = u_0$ holds.

Here is a brief history of weak geodesics. The origin is due to Mabuchi [Mab], in which he defined a metric on the space \mathcal{H} of Kähler metrics. After that, Donaldson [Don] and Semmes [Sem] proved that the geodesic equation on \mathcal{H} can be written as a homogeneous complex Monge Ampère equation. In general, a smooth geodesic may not necessarily exists. But as shown by Chen [Chen], there exists a certain weak geodesic connecting points of \mathcal{H}. Weak geodesics on \mathcal{H} are related to a test configuration, a Kähler-Einstein metric and so on. For more details of geodesics on \mathcal{H}, we refer the reader to [PSS]. In [Dar], Darvas generalized the notion of weak geodesics on the space of quasi-psh functions in a Kähler comology class. These weak geodesics are introduced as the upper envelop of the family of some quasi-psh functions. Recently Darvas, DiNezza and Lu [DDNL] introduced a notion of weak geodesics in a big cohomology class, and solved the question in [DGZ].

The organization of the paper is as follows. In section §2, we introduce the notion of a weak geodesic same as [Dar]. In section §3, we show that the condition on multiplier ideal sheaves in Theorem 1.1 leads to some inequality of m-th Bergman approximations, which are approximations of a psh function by using Hilbert space of L^2 integrable functions with the psh weight. This inequality is the key to prove Corollary 1.2 and Theorem 1.3. In section §4, we give a generalization of Demailly’s m-th Bergman approximation of psh functions. We investigate relationships between Kiselman-Lelong number and Bergman approximation by the same method as [Dem12, Chapter14]. In section §5, we introduce tame singularities and show that Theorem 1.3.

Acknowledgment. The author wishes to express his deep gratitude to his supervisor Prof. Shigeharu Takayama for several helpful comments and enormous supports. He would like to
thank Genki Hosono for some discussion. This work is supported by the Program for Leading Graduate Schools, MEXT, Japan. This work is also supported by JSPS KAKENHI Grant Number 17J04457.

2. Weak geodesics joining psh function

Let Ω be a bounded pseudoconvex domain containing the origin in \mathbb{C}^n. We will denote by $\text{PSH}(\Omega)$ the set of psh functions in Ω. In this section we introduce the notion of weak geodesics joining psh functions, following [Dar], [Ras]. We follow the notation of [Ras, Chapter 3].

Let S be the annulus $\{ \zeta \in \mathbb{C} | 0 < \log |\zeta| < 1 \}$. Given two functions $u_0, u_1 \in \text{PSH}(\Omega)$, consider a set of psh functions $W(u_0, u_1)$ defined as follows;

$$W(u_0, u_1) := \{ r \in \text{PSH}(\Omega \times S) | r \leq 0, \limsup \log |\zeta| \to 0 r(z, \zeta) \leq u_0, \limsup \log |\zeta| \to 1 r(z, \zeta) \leq u_1 \}.$$

The class is not empty since $u_0 + u_1$ is a member of $W(u_0, u_1)$. We let \tilde{u} be the pointwise supremum of all the functions in $W(u_0, u_1)$. Since \tilde{u}^* is a member of $W(u_0, u_1)$ (∗ means upper-semi-continuous regularization), \tilde{u} is a psh function on $\Omega \times S$.

Definition 2.1. The weak geodesic $\{ u_t \}$ joining u_0 and u_1 is a family of functions $u_t(z) := \tilde{u}(z, t^j)$ $\in W(u_0, u_1)$ for each $t \in (0, 1)$.

On the other hand, given two functions $u_0, u_1 \in \text{PSH}(\Omega)$, we define the envelope by

$$P_{[u_1]}(u_0) := \left(\sup\{ r \in \text{PSH}(\Omega) | r \leq u_0, r \leq u_1 + O(1) \} \right)^*.$$

The next result gives a relationship between the weak geodesic and the envelope.

Theorem 2.2 ([Dar], [Hos]). Let u_t be the weak geodesic joining u_0 and u_1. Then $\lim_{t \to 0} u_t = u_0$ in capacity if and only if $P_{[u_1]}(u_0) = u_0$.

3. Key lemma

Definition 3.1. Let u be a psh function on Ω. For any positive integer m, let u_m be given

$$u_m(z) := \frac{1}{2m} \log \sup_{\|f\|_{L^0} \leq 1} |f|^2(z).$$
Here, \(\|f\|_{mu} := \int_{\Omega} |f|^2 e^{-2\mu} dV \) and \(dV := \frac{\sqrt{-1}}{2\pi n!} dz_1 \overline{dz_1} \cdots dz_n \overline{dz_n} \). We call \(u_m \) a \(m \)-th Bergman approximation of \(u \).

For any \(u \in \mathcal{P}(B) \), we will denote by \(\mathcal{G}_u \) the space of holomorphic functions \(f \) on \(B \) such that \(\|f\|_u < \infty \). We consider the evaluation map \(\pi: \mathcal{G}_u \otimes \mathcal{O}_B \to \mathcal{O}_B \) and define \(\mathcal{H}_u := \text{Im}(\pi) \). We obtain the following proposition by [Dem12, Proposition 5.7].

Proposition 3.2. \(\mathcal{H}_u = \mathcal{J}(u) \) holds on \(B \) for any \(u \in \mathcal{P}(B) \).

Now we prove the following key lemma.

Lemma 3.3. Fix \(m \in \mathbb{Z}_{>0} \) and \(u, v \in \mathcal{P}(B) \). Let \(u_m \) (resp. \(v_m \)) be \(m \)-th Bergman approximations of \(u \) (resp. \(v \)). If \(\mathcal{J}(mu) \subset \mathcal{J}(mv) \), then there exists a positive number \(M_m \) such that \(u_m \leq v_m + M_m \).

Proof. The proof will be divided into three steps.

§1 We prove that \(\|f\|_{mv} < \infty \) for all holomorphic function \(f \) on \(B \) such that \(\|f\|_{mu} \leq 1 \). By considering a germ of \(f \) at an origin \(o \), we obtain \(f_o \in \mathcal{J}(mu)_o \subset \mathcal{J}(mv)_o \). By Proposition 3.2, there exists a holomorphic function \(F \) on \(B \) such that \(F_o = f_o \) and \(\|F\|_{mv} < \infty \). Since \(f \) is holomorphic on \(B \) and \(F = f \) near \(o \), we obtain \(F = f \) on \(B \) by the identity theorem. Therefore we obtain \(\|f\|_{mv} < \infty \).

§2 We show that there exists a real number \(M \) such that \(\|f\|_{mv} < M \) for all holomorphic function \(f \) on \(B \) such that \(\|f\|_{mu} \leq 1 \). Suppose it were false. Then we could find \(f_i \) for all positive natural number \(i \) such that \(\|f_i\|_{mu} \leq 1 \) and \(\|f_i\|_{mv} > i \). We set \(\mathcal{F} := \{ f \in \mathcal{O}(B) \mid \|f\|_{mu} \leq 1 \} \). Since \(\mathcal{F} \) is uniform bounded on compact subsets, \(\mathcal{F} \) is normal family by Montel’s theorem. Therefore, there exist \(F \in \mathcal{F} \) and a subsequence \(\{f_{i_k}\} \) such that \(f_{i_k} \to F \) by uniform converge on compact subsets. Then \(\|F\|_{mv} < \infty \) follows from \(F \in \mathcal{F} \). This contradicts our assumption the fact that \(\|F\|_{mv} \geq \lim inf_k \|f_{i_k}\|_{mv} \geq \infty \).

§3 We finish proof. For \(f \in \mathcal{F} \),

\[
\frac{1}{2m} \log(|f|^2/\|f\|_{mv}^2) \leq \frac{1}{2m} \log \sup_{\|g\|_{mv} \leq 1} |g|^2 = v_m.
\]

Then we put \(M_m := \frac{1}{m} \log M \),

\[
\frac{1}{2m} \log(|f|^2) \leq v_m + \frac{1}{2m} \log \|f\|_{mv}^2 \leq v_m + \frac{1}{m} \log M.
\]

Therefore, we take supremum for \(f \), which proves the lemma. \(\square \)
4. Kiselman Lelong number and Bergman approximation

Definition 4.1 ([Kis] Definition 5.1 and [Dem] Chapter 3). Let \(\varphi \in \text{PSH}(\Omega) \) and \(y \in \mathbb{R}^n_{>0} \). Then we define the positive constant to be

\[
y^K(\varphi, 0, y) := \lim_{t \to -\infty} \frac{1}{t} \sup_{|z| \leq 1} \varphi(z_1 e^{by_1}, \ldots, z_n e^{by_n}).
\]

We call \(n^K(\varphi, 0, y) \) Kiselman-Lelong number with coefficients \(y \) at the origin.

Lemma 4.2. Let \(\varphi \in \text{PSH}(\Omega) \), and \(r_1, r_2, \ldots, r_n \) be positive real numbers with \(|z| \leq 2r_1 \subset \Omega \). Then there exists a constant \(C \) independent of \(m \) satisfying:

\[
\varphi(w) - \frac{C}{m} \leq \varphi_m(w) \leq \sup_{|z| \leq 1} \varphi(z) - \frac{1}{2m} \log(\pi^n r_1^2 \cdots r_n^2 / n!)
\]

for all \(w \in \{|z| \leq r_1\} \). Here, \(\varphi_m \) is the \(m \)-th Bergman approximation of \(\varphi \).

Proof. In [Dem12, Chapter 14], \(\varphi(w) - \frac{C}{m} \leq \varphi_m(w) \) is already proved. Thus we need only to show the right hand inequality.

We fix \(m \). By definition of \(\varphi_m \), we have

\[
\varphi_m = \frac{1}{2m} \log \sup_{\|f\|_{lev} \leq 1} |f|^2 = \sup_{\|f\|_{lev} \leq 1} \frac{1}{2m} \log |f|^2.
\]

Here \(\|f\|_{lev} = \int_\Omega |f|^2 e^{-2m\varphi} dV \).

We fix a holomorphic function \(f \) on \(\Omega \) satisfying \(\|f\|_{lev} \leq 1 \). Since \(\log |f|^2 \) is psh, we apply submean value inequality to each variable,

\[
\log |f|^2(w_1, \ldots, w_n) \leq \frac{\sqrt{-1}}{2\pi r_1^2} \int_{|z_1| \leq r_1} \log |f|^2(z_1, 0, \ldots, 0) dz_1 d\bar{z}_1
\]

\[
\leq \cdots
\]

\[
\leq \frac{\sqrt{-1}}{2\pi^n r_1^2 \cdots r_n^2} \int_{|z| \leq r} \log |f|^2(z_1, \ldots, z_n) dz_1 d\bar{z}_1 \cdots dz_n d\bar{z}_n
\]

\[
= \frac{n!}{\pi^n r_1^2 \cdots r_n^2} \int_{|z| \leq r} \log |f|^2(\zeta) dV, \quad (4.2)
\]

Since log is a concave function, by Jensen inequality,

\[
\frac{n!}{\pi^n r_1^2 \cdots r_n^2} \int_{|z| \leq r} \log |f|^2(\zeta) dV \leq \log \left(\frac{n!}{\pi^n r_1^2 \cdots r_n^2} \int_{|z| \leq r} |f|^2(\zeta) dV \right)
\]

\[
= \log \left(\int_{|z| \leq r} |f|^2(\zeta) dV \right) + \log \frac{n!}{\pi^n r_1^2 \cdots r_n^2}, \quad (4.3)
\]
Therefore from \(\|f\|_{m,p} = \int_{\Omega} |f|^2 e^{-2m\varphi} dV \leq 1 \), we have

\[
\log\left(\int_{|z_i - w_i| \leq r_i} |f|^2(\zeta) dV \right) \leq \log\left(\int_{|z_i - w_i| \leq r_i} |f|^2 e^{-2m\varphi(\zeta)} dV \right) + \sup_{|z_i - w_i| \leq r_i} 2m\varphi(\zeta)
\]

\[
(4.4)
\]

\[
\leq \log\left(\int_{\Omega} |f|^2 e^{-2m\varphi} dV \right) + \sup_{|z_i - w_i| \leq r_i} 2m\varphi(\zeta)
\]

\[
\leq 2m \sup_{|z_i - w_i| \leq r_i} \varphi(\zeta).
\]

We thus get

\[
\varphi_m(w) = \sup_{\|f\|_{m,p} \leq 1} \frac{1}{2m} \log |f|^2(w)
\]

\[
(4.5)
\]

\[
\leq \sup_{\|f\|_{m,p} \leq 1} \frac{1}{2m} \log\left(\int_{|z_i - w_i| \leq r_i} |f|^2(\zeta) dV \right) + \frac{1}{2m} \log\frac{n!}{\pi^m r_1^2 \cdots r_n^2}
\]

\[
\leq \sup_{|z_i - w_i| \leq r_i} \varphi(\zeta) - \frac{1}{2m} \log(\pi^n r_1^2 \cdots r_n^2/n!).
\]

\[\square\]

Corollary 4.3. Under the same assumption in Lemma 4.2, for all \(y \in \mathbb{R}^n \),

\[
(4.6)
\]

\[
y^K(\varphi, 0, y) \geq y^K(\varphi_m, 0, y) \geq y^K(\varphi, 0, y) - \frac{y_1 + \cdots + y_n}{m}
\]

holds. In particular, \(\lim_{m \to \infty} y^K(\varphi_m, 0, y) = y^K(\varphi, 0, y) \).

Proof. By Lemma 4.2, if we take supremum on \(w \in \{|z_i| \leq r_i\} \), we have

\[
(4.7)
\]

\[
\sup_{|w| \leq r_i} \varphi(w) - C m \leq \sup_{|w| \leq r_i} \varphi_m(w) \leq \sup_{|w| \leq 2r_i} \varphi(\zeta) - \frac{\log r_1 \cdots r_n}{m} - \frac{1}{2m} \log(\pi^n n!).
\]

Therefore if we take \(t < 0 \), put \(r_i = e^{ht} \) and multiply \(1/t \), we have

\[
(4.8)
\]

\[
\frac{1}{t} \sup_{|w| \leq e^{ht}} \varphi(w) - C \frac{m t}{t} \geq \frac{1}{t} \sup_{|w| \leq e^{ht}} \varphi_m(w) \geq \frac{1}{t} \sup_{|w| \leq 2e^{ht}} \varphi(\zeta) - \frac{ty_1 + \cdots + ty_n}{mt} - \frac{1}{2mt} \log(\pi^n n!).
\]

Therefore we take the limit for \(t \to -\infty \),

\[
y^K(\varphi, 0, y) \geq y^K(\varphi_m, 0, y) \geq y^K(\varphi, 0, y) - \frac{y_1 + \cdots + y_n}{m}.
\]

\[\square\]

Theorem 4.4 (= Theorem 1.1). Let \(\phi, \psi \in \mathcal{P}(B) \). If \(\mathcal{J}(m\phi) \subset \mathcal{J}(m\psi) \) for any \(m \in \mathbb{Z}_{>0} \), then \(y^K(\phi, 0, y) \geq y^K(\psi, 0, y) \) for any \(y \in \mathbb{R}^n_{>0} \).
Proof. Fix \(y \in \mathbb{R}_+^n \). Since \(\mathcal{I}(m\varphi) \subset \mathcal{I}(m\psi) \) for any \(m \in \mathbb{Z}_{>0} \), by Lemma 3.3,
\[
\nu^K(\phi_m, 0, y) \geq \nu^K(\psi_m, 0, y).
\]
Therefore by Corollary 4.3, by taking the limit \(m \to \infty \), we have
\[
\nu^K(\phi, 0, y) \geq \nu^K(\psi, 0, y).
\]
\(\square \)

Corollary 4.5 (=Corollary 1.2). Let \(u_0 \) and \(u_1 \) be toric psh functions on the unit ball \(B \) in \(\mathbb{C}^n \) and let \(u_t \) be the weak geodesic joining \(u_0 \) and \(u_1 \). Then the following are equivalent.

1. \(\lim_{t \to 0} u_t = u_0 \) in capacity.
2. \(\nu^K(u_0, 0, y) \geq \nu^K(u_1, 0, y) \) for any \(y \in \mathbb{R}_+^n \).
3. \(\mathcal{I}(mu_0) \subset \mathcal{I}(mu_1) \) for any \(m \in \mathbb{Z}_{>0} \).

Proof. The equivalence between (1) and (2) was known by Hosono [Hos]. From Theorem 1.1, (3) implies (2), thus we only need to show that (2) implies (3). It is easy to check that according to [Gue, Theorem 1.20], \(\mathcal{I}(u_0) \) is monomial and
\[
z_1^{a_1}z_2^{a_2} \cdots z_n^{a_n} \in \mathcal{I}(u_0) \iff \sup_{y \in \mathbb{R}_+^n} \frac{\nu^K(u_0, 0, y)}{\nu^K(z_1^{a_1}z_2^{a_2} \cdots z_n^{a_n}, 0, y) + \sum_{i=1}^n a_iy_i} < 1.
\]

5. Tame singularity and weak geodesics

Definition 5.1 ([BFJ] section 5.3). We say that \(u \in PSH(B) \) has tame singularities with coefficient \(c > 0 \), if
\[
u u + O(1) \leq u_m \leq (1 - c/m)u + O(1)
\]
holds, where the \(O(1) \) term is independent of \(m \).

Remark 5.2. According to [BFJ, Lemma 5.10], if \(u \) is exponential \(\alpha \)-holder for some \(\alpha > 0 \) (i.e. \(e^u \) is \(\alpha \)-holder continuous), then \(u \) has tame singularities. In particular, if \(u \) has algebraic singularities (i.e. \(u \) is written as sum of \(C^\infty \)function and \(\log |f| \) for some holomorphic function \(f \)), then \(u \) has tame singularities.

Theorem 5.3 (=Theorem 1.3). Let \(u_0, u_1 \in \mathcal{P}(B) \) and let \(u_t \) be a weak geodesic joining \(u_0 \) and \(u_1 \). We assume \(u_1 \) has tame singularities. Then the following are equivalent.

1. \(\lim_{t \to 0} u_t = u_0 \) in capacity.
2. \(\mathcal{I}(mu_0) \subset \mathcal{I}(mu_1) \) for any \(m \in \mathbb{Z}_{>0} \).
Chapter 14, there exists a positive number C such that $\mathcal{J}(u_0, u_1 + C) \leq u_1 + C$, therefore $\mathcal{J}(u_0) = \mathcal{J}(P(u_0, u_1 + C)) \subset \mathcal{J}(u_1)$.

Conversely, we assume $\mathcal{J}(mu_0) \subset \mathcal{J}(mu_1)$ for any $m \in \mathbb{Z}_{>0}$. We will denote $u_{i,m}$ by the m-th Bergman approximation of u_i for $i = 0, 1$. By Demailly’s approximation theorem [Dem12, Chapter 14], there exists a positive number C_1 independent of m such that $u_0 - \frac{C_1}{m} \leq u_{0,m}$. From Lemma 3.3, we obtain $u_0 \leq u_{1,m} + O(1)$. It follows that $P_{[u_{1,m}]}(u_0) = u_0$.

Since u_1 has tame singularities, $u_{1,m} \leq (1 - \frac{C}{m})u_1 + O(1)$ for all $m \in \mathbb{Z}_{>0}$. For all positive number C and all $r \in PS H(B)$ satisfying $r \leq \min(u_0, u_{1,m} + C)$,

$$r + \frac{c}{m}u_1 \leq u_0, r + \frac{c}{m}u_1 \leq u_1 + C + O(1).$$

By the definition of $P_{[u_{1,m}]}(u_0)$, we have $r + \frac{c}{m}u_1 \leq P_{[u_{1,m}]}(u_0)$. Thus we take supremum for r and C, $P_{[u_{1,m}]}(u_0) + \frac{c}{m}u_1 \leq P_{[u_{1,m}]}(u_0)$ holds. Since $P_{[u_{1,m}]}(u_0) = u_0$, it follows that $u_0 + \frac{c}{m}u_1 \leq P_{[u_{1,m}]}(u_0)$. Consequently we can take the limit for m outside the origin, we have $u_0 \leq P_{[u_{1,m}]}(u_0)$ on $B \setminus \{0\}$. On the other hand, $P_{[u_{1,m}]}(u_0) \leq u_0$ by definition. Hence we have $u_0 = P_{[u_{1,m}]}(u_0)$ on $B \setminus \{0\}$. From Lemma 5.4 as below, we get $u_0 = P_{[u_{1,m}]}(u_0)$.

Lemma 5.4 ([Gun] Chapter A). Let $u, v \in PS H(\Omega)$. If $u = v$ almost everywhere with respect to Lebesgue measure, then $u = v$ on Ω.

Proof. First, we show that

$$(5.1) \quad u(a) = \lim_{\epsilon \to 0} \frac{1}{\text{vol}(B(a, \epsilon))} \int_{B(a, \epsilon)} u(z) dV$$

Since u is an upper-semi-continuous function, we have

$$u(a) = \limsup_{z \to a} u(z)$$

$$= \lim_{\epsilon \to 0} \sup_{z \in B(a, \epsilon)} u(z)$$

$$\geq \lim_{\epsilon \to 0} \frac{1}{\text{vol}(B(a, \epsilon))} \int_{B(a, \epsilon)} u(z) dV.$$

On the other hand, according to the submean value inequality,

$$(5.3) \quad u(a) \leq \lim_{\epsilon \to 0} \frac{1}{\text{vol}(B(a, \epsilon))} \int_{B(a, \epsilon)} u(z) dV.$$

We thus get (5.1).
Applying (5.1),

\[
\begin{align*}
 u(a) &= \lim_{\epsilon \to 0} \frac{1}{\text{vol}(B(a, \epsilon))} \int_{B(a, \epsilon)} u(z) dV \\
 &= \lim_{\epsilon \to 0} \frac{1}{\text{vol}(B(a, \epsilon))} \int_{B(a, \epsilon)} v(z) dV \\
 &= v(a) .
\end{align*}
\]

(5.4)

\[\Box\]

References

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914, Japan.

E-mail address: masataka@ms.u-tokyo.ac.jp