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Preface

We study proper surjective morphisms by using singular Hermitian metrics and
applications of singular Hermitian metrics of vector bundles.

In Chapter 2, we study the following Fujita-type conjecture proposed by Popa and
Schnell.

CoNJECTURE 0.0.1 ([PS14] Conjecture 1.3). Let f: X — Y be a surjective
morphism of smooth projective varieties, with Y of dimension n, and L be an ample
line bundle on Y. For any a > 1, the sheaf

F(KZ") @ L
is globally generated for all b > a(n + 1).

We give a partial answer of this conjecture and we obtain an effective bound on the
global generation of a direct image of a pluri-adjoint line bundle on the regular locus.

THEOREM 0.0.2. [Iwal7] Let f: X — Y be a surjective morphism of smooth
projective varieties, with Y of dimension n, and L be an ample line bundle on Y. If y
is a regular value of f, then for any a > 1 the sheaf

fo(KRY) @ L

n

is generated by the global sections at y for all b > % +a(n+1).

We also obtain an effective bound on the generic global generation for a Kawa-
mata log terminal Q-pair. We use analytic methods such as m-Bergman type metric
on mKx,y, relative Ohsawa-Takegoshi type L? extension theorem, L? estimates, and
injective theorems of cohomology groups.

In Chapter 3, we study a Nadel-Nakano type vanishing theorem of a vector bundle
with a singular hermitian metric.

THEOREM 0.0.3. [Iwal8a] Let (X,w) be a compact Kéhler manifold and (E, h)
be a holomorphic vector bundle on X with a singular hermitian metric. We assume the
following conditions.

(1) There exists a proper analytic subset Z such that h is smooth on X \ Z.
(2) he=¢ is a positively curved singular hermitian metric on E for some continuous
function ¢ on X.
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(3) There exists a positive number € > 0 such that /—10g), — ew ® Idg > 0 on
X \ Z in the sense of Nakano.

Then H9(X, Kx ® E(h)) = 0 holds for any ¢ > 1.

E(h) is a higher rank version of multiplier ideal sheaf. We also obtain a gener-
alization of Griffiths’ vanishing theorem and a generalization of Ohsawa’s vanishing
theorem.

In Chapter 4 we give complex geometric descriptions of the notions of algebraic
geometric positivity of vector bundles and torsion-free coherent sheaves, such as nef,
big, pseudo-effective and weakly positive, by using singular hermitian metrics.

THEOREM 0.0.4. [Iwal8b] Let X be a smooth projective variety and E be a
holomorphic vector bundle on X.

(1) E is nef iff there exists an ample line bundle A on X such that Sym*(E) ® A
has a Griffiths semipositive smooth hermitian metric for any & € N-.

(2) E is big iff there exist an ample line bundle A and k € Ny such that Sym*(E)®
A~! has a Griffiths semipositive singular hermitian metric.

(3) E is pseudo-effective iff there exists an ample line bundle A such that Sym*(E)®
A has a Griffiths semipositive singular hermitian metric for any k € Nyg.

(4) E is weakly positive iff there exist an ample line bundle A and a proper Zariski
closed set Z such that Sym*(E) ® A has a Griffiths semipositive singular her-
mitian metric hy for any k € Ny and the Lelong number of by at x is less than
2 for any z € X \ Z.

As an applications, we obtain a generalization of Mori’s result by using the result

of [CMSBO02].

COROLLARY 0.0.5. [Iwal8b| Let X be a smooth projective n-dimensional va-
riety. If the tangent bundle T’y is big then X is biholommorphic to CP".

In Chapter 5, we develop the theory of singular hermitian metrics on vector bun-
dles. As an application, we give a structure theorem of a projective manifold X with
pseudo-effective tangent bundle. This is a joint work with Genki Hosono and Shin-ichi
Matsumura.

THEOREM 0.0.6. [HIM19] Let X be a projective manifold with pseudo-effective
tangent bundle. Then X admits a (surjective) morphism ¢ : X — Y with connected
fiber to a smooth manifold Y with the following properties:

1) The morphism ¢ : X — Y is smooth.

2) The image Y admits a finite étale cover A — Y by an abelian variety A.
3) A general fiber F of ¢ is rationally connected.

4) A general fiber F of ¢ also has the pseudo-effective tangent bundle.

(
(
(
(



PREFACE 7

Moreover, if we further assume that T'x admits a positively curved singular hermitian
metric, then we have:

(5) The standard exact sequence of tangent bundles
O—)Tx/y—>TX—>¢*Ty—>O

splits.
(6) The morphism ¢ : X — Y is locally trivial (that is, all the fibers are smooth
and isomorphic).

To summarize, it is as shown in this table.

[CP91][DPS94|
Ty is nef

Y
[Mor79] T is ample = X = CP" == 3 finite étale cover X

3 submersion X — A
s.t. A is Abelian variety,
fiber is Fano.

|

[HIM19]
Tx is pseudo effective

\
[Iwal8b] Tx is big = X = CP" —= 3 finite étale cover X
3 submersion X — A
s.t. A is Abelian variety,
fiber is rationally connected.

In Chapter 6, we prove a few result. In 6.1, we study a Lelong number of singular
hermitian metric on vector bundle and apply to augmented base locus. In 6.2 we give
an example of a rationally connected manifold with a hermitian metric with negative
scalar curvature. This is a counter-example in [NZ18, Conjecture 1.6]. In 6.3 we
show an existence of a higher Fujita’s decomposition of a direct image sheaf of relative
pluri-canonical line bundle.
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CHAPTER 1

Preliminary

1.1. Notations

e N, is a set of positive integers.

e For any compact Kéhler manifold X, Ky := det(Tx)" is a canonical line
bundle, where Ty is a holomorphic tangent bundle of Y.

e We regard Cartier (Weil) divisors as line bundles when the base space is a
smooth projective manifold. In particular, a canonical divisor is regarded as
a canonical line bundle. We regard locally free coherent sheaves as vector
bundles.

e We denote Hom(E, Ox) by £V for any torsion-free coherent sheaf &.

e For any line bundle L, we also denote LY by L®~!. For any integer m, we
denote L®™ by L™ or L®™.

1.2. Singular hermitian metrics on line bundles.

Let X be a connected complex manifold. A function ¢ : X — [—00,+00) on X is
said to be quasi-plurisubharmonic if ¢ is locally the sum of a plurisubharmonic function
and of a smooth function. Let L be a line bundle on X. Fix some smooth metric hg
on L. h is a singular hermitian metric if h = hge™ for some quasi-plurisubharmonic
function ¢.

For any quasi-plurisubharmonic function ¢ on X, the multiplier ideal sheaf J(e~%)
is a coherent subsheaf of Ox defined by

J(e ), :={f € Ox,;3U > x/ |flPe ?d\ < oo},
U

where U is an open coordinate neighborhood of z, and d\ is the standard Lesbegue
measure in the corresponding open chart of C", and the Lelong number v(p, z) at x € X

is defined by

v(p, x) ;= liminf 2(2) .

==z log|z — z
We define the multiplier ideal sheaf J(h) of a singular hermitian metric A on L by
J(h) = J(elog(hhal)) and the Lelong number v(h,z) of h at x € X is defined by
v(h,z) := v(—log(hhy'),z). We point out J(h) and v(h,z) do not depend on the
choice of hg. We define the curvature current of h by /=10y, := Op p, + V—100¢.
11



12 1. PRELIMINARY

1.3. Algebraic positivity of line bundles
We define notions of algebraic positivity of line bundles.

DEFINITION 1.3.1. Let X be a smooth projective manifold and L be a line
bundle.

(1) L is ample if there exist an m € Ny and a basis s -+ sy € H°(X, L®™) such

that
@‘L®7rz| X = C]P)N
x = (so(z): - :sy(x)).

is closed embedding.
(2) Lis nefif L.C' > 0 for any curve C' C X.
(3) L is big if limsup,,_, ., dim HO(X, L&) /mdmX > .
(4) L is pseudo-effective if there exists an ample line bundle A such that L™ ® A

is big for any m € Ny,.

We have the following theorem by Kodaira and Demailly.

THEOREM 1.3.2. [Kod54] [Dem92] Let w be a Kahler form on X.

(1) L is ample iff L has a smooth metric with positive curvature.

(2) L is nef iff for any € > 0 there exists a smooth metric h, such that \/@L,he >
—€w.

(3) L is big iff there exist an € > 0 and a singular hermitian metric h such that
Ve Ln > €w in the sense of current.

(4) L is pseudo-effective iff L has a singular hermitian metric with semipositive
curvature current.

We have the following implications.

ample =~ big

H ﬂ

nef =~ pseudo-effective

1.4. Singular hermitian metrics on vector bundles.

Next, we review the definitions of singular hermitian metrics. We adopt the defini-
tions of singular hermitian metrics of vector bundles in [HPS18].

DEFINITION 1.4.1. [HPS18| A singular hermitian inner product on a finite di-
mensional complex vector space V' is a function | — |,: V — [0, +00] with the following
properties:

(1) |a-v|p = |a||v|p for any o € C\ 0 and any v € V.
(2) [0]r = 0.
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(3) |v+wlp < |v|p + |w|p, for any v,w € V.
(4) v+ w2 + |v —w|z =2|v]? + 2|w|? for any v,w € V.

DEFINITION 1.4.2. [BPO8|[HPS18] Let X be a connected complex manifold
and F be a vector bundle on X. A singular hermitian metric on E is a function h that
associates to every point € X asingular hermitian inner product |—|5 . : £, — [0, +00]
on the complex vector space E,, subject to the following two condtions:

(1) |v|pe =0« v =0 for almost everywhere x € X.
(2) |v|pe < +oo for any v € E, and almost everywhere z € X.
(3) For any open U and any s € H*(U, E),

|s|p: U — [0, +00] ; = —|s(2)|na
is measurable.

DEFINITION 1.4.3. [BP08] [PT18][HPS18] Let h be a singular hermitian met-
ric on a vector bundle E.

(1) h is Griffiths seminegative or (semi)negatively curved if log |ul is plurisubhar-
monic for any local holomorphic section u.

(2) h is Griffiths semipositive or (semi)positively curved if a metric h¥ := h~! on
EV is Griffiths seminegative.

If h is smooth, h is Griffiths semipositive in above definition is same as usual one.
These definitions are well-defined even if E is a line bundle. In particular, for any
singular hermitian metric h on a line bundle L, h is Griffiths semipositive iff h has
semipositive curvature current.

We recall the definition of a singular hermitian metric on a torsion-free coherent
sheaf. Let £ # 0 be a torsion-free coherent sheaf on X. We will denote by X¢ the
maximal Zariski open set where £ is locally free. We point out £|x, is a vector bundle
on X¢ and codim(X \ Xg) > 2.

DEFINITION 1.4.4. [PT18, Definition 2.4.1] [HPS18]

(1) The singular hermitian metric h on £ is a singular hermitian metric on the
vector bundle &|x,.

(2) A singular hermitian metric h on £ is Griffiths seminegative or (semi)negatively
curved it h|x, is Griffiths seminegative.

(3) A singular hermitian metric h on & is Griffiths semipositive or (semi)positively
curved if there exists a Griffiths seminegative metric g on £Y|x, such that

hlxg = (g|X£>v'

These are well-defined definitions (see [PT18, Remark 2.4.2]). About a Griffiths
semipositive singular hermitian metric, Paun and Takayama proved the following The-
orem.
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THEOREM 1.4.5. [PT18, Theorem 1.1] [HPS18, Theorem 21.1 and Corollary

21.2] Let f: X — Y be a projective surjective morphism between connected complex

manifolds and (L,h) be a holomorphic line bundle with a singular hermitian metric

with semipositive curvature current on X. Then f,(Kx/y ® L ® J(h)) has a Griffiths
semipositive singular hermitian metric.
Moreover if the inclusion morphism

f*<KX/Y QL®J(h)) — f*(KX/Y ® L)

is generically isomophism, then f,(Kx/y ® L) also has a Griffiths semipositive singular
hermitian metric.

1.5. Algebraic positivity on vector bundles

We summarize the notions of positivity of vector bundles and torsion free coherent
sheaves. In this thesis, we will denote by m: P(E) — X the projective bundle of rank
one quotients of £ and by Opg)(1) the universal quotient of 7*E on P(E).

DEFINITION 1.5.1 ((BDPP13, Definition 7.1],[DPS94, Definition 1.17], [DPSO01,
Definition 6.4], [Nak04, Definition 3.20]). Let X be a smooth projective manifold.

1) A vector bundle E is ample if Op(g)(1) is a ample line bundle on P(E).

2) A vector bundle E is nef if Op(gy(1) is a nef line bundle on P(E).

3) A vector bundle E is numerically flat if E is nef and ¢, (E) = 0.

4) A vector bundle E is almost nef if there exists a countable family of proper
subvarieties Z; of X such that E|c is nef for any curve C' ¢ U, Z;.

(5) A torsion free coherent sheaf £ is weakly positive at x € X if, for any a €
N.o and for any ample line bundle A on X, there exists b € Ny such that
Sym®(E)VV ® AP is globally generated at x.

(6) A torsion free coherent sheaf & is pseudo-effective (weakly positive in the sense
of Nakayama) if € is weakly positive at some z € X.

(7) A torsion free coherent sheaf & is weakly positive (weakly positive in the sense
of Viehweg) if there exist a non empty Zariski open set U such that & is weakly
positive at any z € U.

(8) A torsion free coherent sheaf &£ is big (V-big, dd-ample, ample modulo double
duals) if there exist @ € N5y and an ample line bundle A on X such that
Sym*(E)VY @ A7! is pseudo-effective.

(9) A torsion free coherent sheaf £ is generically globally generated if £ is globally

generated at a general point in X.

(
(
(
(

The definition of ample (resp. nef, big, or pseudo-effective) vector bundles coincides
with the usual one in the case E being a line bundle. Relationships among them can
be summarized by the following table:



1.5. ALGEBRAIC POSITIVITY ON VECTOR BUNDLES 15

numerically flat ample Op(p)(1) is big
nef big weakly positive
ey
E has a positively curved . &)
singular hermitian metric pseudoeffectlve\ almoit nef
E is generically Sym™(FE) is generically globally Oppy(1) is
globally generated generated for some m € Ny pseudo-effective

Even if E is a line bundle, the converse of (1) is unknown.! When E is a line bundle,

the converses of (2) hold by [BDPP13, Theorem 0.2]. However, in a higher rank case,
the converse of (2) is unknown.

EXAMPLE 1.5.2.

(1) Ogpr is nef (pseudo-effective) but not ample (big).

(2) We put E = Ogp1(2) ® Ogpr (—1). By Cutkosky criterion ([Laz04al), Opg) (1)
is big (pseudo-effective) line bundle on P(E). However E is not nef (almost
nef) vector bundle on CP' since the quotient sheaf Ogpi(—1) of E does not
have semipositive degree.

(3) For any n € Ny, we put E, = Ocpt ® Ocpt(n). The Hirzebruch surface is
defined by F, := P(E,). We put ruling 7 : F,, — CP', a general fiber F of T,
and L := Op,(1). By [Bea96| and [Laz04a], we have the followings for any
integers a, b.

o L ® F? is pseudo-effective iff @ > 0 and na + b > 0.
o [°® F'isnefiff a > 0 and b > 0.
Therefore L? ® F~™ is big but not nef. F is nef but not big.

(4) Let C be an elliptic surface. For any n € N5g we put S,, := P(O¢ & Oc(np)),
where p is a prime divisor of C'. The tangent bundle of S,, is pseudo-effective by

Proposition 5.3.2. But by computations, Sym™ (7, ) is not generically globally
generated for any m € Ny.

LJohn-Lesiutre [Les14] proved that there exists a pseudo-effective R-divisor D such that D is not
weakly positive. However D is not Q-divisor.
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(5) Let C' be an elliptic curve. E is defined by the nontrivial exact sequence of
vector bundles:
0—0Os— FE— O — 0.

E is nef (pseudo-effective) vector bundle by [DPS94, Example 1.7]. By [Hos17,
Example 5.4|, E does not have a Griffiths semipositive singular hermitian met-
ric.

We review some of the standard facts of augmented base locus and restiricted base
locus of vector bundles.

DEFINITION 1.5.3. [BKK+415, Section 2] Let X be a smooth projective variety
and E be a holomorphic vector bundle. The base locus of E' is defined by
Bs(E) :={z € X: H*(X, E) — E, is not surjective},
and the stable base locus of E is defined by
B(E) := (] Bs(Sym™(E)).
m>0
Let A be an ample line bundle. We define the augmented base locus of E by
B.(E)= (] B(Sym“(E)® A®7)
PgEN>0
and the restricted base locus of E by
B_(E)= [J B(Sym(E)® A®).
P,g€N>0

We point out B, (£) and B_(£) do not depend on the choice of the ample line bundle
A by [BKK+15, Remark 2.7]. By [BKK+415|, we have m(B_(Op(1))) = B_(E)
and 7(B. (Os(s)(1))) = B (E)
We point out the relationship between algebraic positivity and base loci.
THEOREM 1.5.4. [BDPP13, Proposition 7.2.] [BKK+15, Definition 5.1] The
following are equivalent.
(1) E is pseudo-effective.
(2) B_(E) # X,
(3) Opgy(1) is pseudo-effective on P(£) and W(B_(OP(E)(l))> #X

THEOREM 1.5.5. [BKK+15, Definition 5.1] The following are equivalent.
(1) E is weakly positive.

(2) B(E) # X.

THEOREM 1.5.6. [BKK+415, Theorem 6.4] The following are equivalent.
(1) E is big.
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(2) there exist b € N5 and an ample line bundle A on X such that Sym®(E)® A~
is globally generated at a general point.

(3) Oz (1) is big on P(E) and w(m(om)u))) £ X
(4) BL(E) # X.

1.6. MRC fibrations

THEOREM 1.6.1. [Cam92][KoMM92] Let X be a smooth projective manifold.
Then there exists a dominant rational map ¢ : X --» Y onto a smooth projective
manifold Y with the following properties:

(1) There exists a Zariski open set Yy C Y such that ¢|x, : Xo — Y is proper
holomorphic map, where X, := ¢~ 1(Y}).

(2) A general fiber F' of ¢ is an irreducible rationally connected manifold.

(3) If a rational curve R meets a general fiber F', then we have R C F.

This rational map ¢ is called MRC (Mazimally rationally connected) fibration. An
MRC fibration is unique up to birational map.

By Greb-Harris-Starr’s result [GHS03| and Boucksom-Demailly-Paun-Peternell’s
result [BDPP13], we have the following theorem.

THEOREM 1.6.2. [GHS03]|[BDPP13] For any MRC fibration ¢ : X --» Y, the
canonical bundle Ky of Y is pseudo-effective.

1.7. Singular Foliations

DEFINITION 1.7.1. [Lazi, Chapter 4] Let X be a smooth projective manifold
and £ C Tx be a coherent sheaf on X.

(1) & is a singular foliation if £ is saturated (i.e. £ and Tx /€ are torsionfree) and
£ is closed by Lie bracket.

(2) A subset F'is a leaf if F' is a maximally connected locally closed set such that
TF - S’F

For any morphism f : X — Y between smooth projective manifolds, the kernel
ker df C Tx of the differential df : Ty — f*(Ty) is a singular foliation. A general fiber
F or f is a leaf of ker df.

The following theorems is used in Chapter 5.

THEOREM 1.7.2. [Hor07, Corollary 2.11] Let £ C Tx be a singular foliation.
If £ is locally free and a leaf of £ is compact and rationally connected, then there
exists a smooth morphism f : X — Y onto a smooth projective manifold Y such that
& = kerdf. Moreover all fiber F' of f is compact and rationally connected.
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THEOREM 1.7.3. [H6r07, Lemma 3.19] Let ¢ : X — Y be a smooth morphism
between smooth projective manifolds. If there exists a vector bundle V' C T'x such that
Tx =V @ Tx/y, then ¢ is locally trivial (analytic fiber bundle), i.e. for any y € Y,
there exist Euclid open set y € V C Y such that ¢ (V) 2 V x F, where F is a fiber
of p.



CHAPTER 2

On the global generation of direct images
of pluri-adjoint line bundles

ABSTRACT. We study the Fujita-type conjecture proposed by Popa and Schnell. We
obtain an effective bound on the global generation of direct images of pluri-adjoint
line bundles on the regular locus. We also obtain an effective bound on the generic
global generation for a Kawamata log terminal Q-pair. We use analytic methods such
as L? estimates, L? extensions and injective theorems of cohomology groups.

2.1. Introduction

The aim of this paper is to give a partial answer to the following conjecture by Popa
and Schnell. This conjecture is a version of Fujita’s conjecture.

CONJECTURE 2.1.1 ([PS14] Conjecture 1.3). Let f: X — Y be a surjective
morphism of smooth projective varieties, with Y of dimension n, and L be an ample
line bundle on Y. For any a > 1, the sheaf

fu( KR ® L
is globally generated for all b > a(n + 1).

In [PS14], Popa and Schnell proved this conjecture in the case when L is ample
and globally generated. After that, Dutta removed the global generation assumption
on L making a statement about generic global generation.

THEOREM 2.1.2 ([Dut17] Theorem A). Let (X, A) be a Kawamata log terminal
Q-pair of a normal projective variety and an effective divisor, and Y be a smooth
projective n-dimensional variety. Let f: X — Y be a surjective morphism, and L be
an ample line bundle on Y. For any a > 1 such that a(Kx + A) is an integral Cartier
divisor, the sheaf

e (OX (a(Kx + A))) ® L
is generated by the global sections at a general point y € Y either
(1) for all b > a(”("TH) +1), or
(2) for all b > a(n + 1) when n < 4.
On the other hand, Deng obtained a linear bound for b when a is large by using
analytic methods.

19
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THEOREM 2.1.3 ([Dengl7] Theorem C). With the above notation and in the
setting of Theorem 2.1.2, for any a > 1 such that a(Kx + A) is an integral Cartier
divisor, the sheaf

fe (OX (a(Kx + A))) ® L&
is generated by the global sections at a general point y € Y either

(1) for all b > n? —n+a(n+ 1), or
(2) for all b > n? + 2 when Ky is pseudo-effective.

Now we state our results. First, we treat the case when X is smooth and A = 0.
In [Dut17], Dutta proved that if K%* is relatively free on the regular locus of f,
[ (K$*) @ L® is generated by the global sections at any regular value of f for all

b > a(% + 1) . In this paper, we can remove this assumption and obtain a better

bound for b.

THEOREM 2.1.4. Let f: X — Y be a surjective morphism of smooth projective
varieties, with Y of dimension n, and L be an ample line bundle on Y. If y is a regular
value of f, then for any a > 1 the sheaf

fo(KR*) @ L

is generated by the global sections at y for all b > @ +a(n+1).

In this paper, X, is a smooth connected variety for any regular value y € Y. In
particular, if f is smooth, f.(K§*)®L®" is globally generated for all b > @—i—a(n—i—l).
We give a partial answer to Conjecture 2.1.1.

Second, we treat a log case. In this case, we obtain the same bound as Theorem
2.1.4 about generic global generation even when X is a complex analytic variety.

THEOREM 2.1.5. Let (X, A) be a Kawamata log terminal Q-pair of a normal
complex analytic variety in Fujiki’s class C and an effective divisor, and Y be a smooth
projective n-dimensional variety. Let f: X — Y be a surjective morphism, and L be
an ample line bundle on Y. For any a > 1 such that a(Kx + A) is an integral Cartier
divisor, the sheaf

fx (OX (&(KX + A))) ® L%
is generated by the global sections at a general point y € Y either

(1) for all b > @4—&(71—1—1) , or
(2) for all b > @ + 2 when Ky is pseudo-effective.

REMARK 2.1.6. After the author submitted this paper to arXiv, Dutta told the
author that she and Murayama obtained the same bounds as in Theorem 2.1.5 (1) in
[DM17, Theorem B] by using the algebraic geometric methods when X is a normal
projective variety. Also, in [DM17, Theorem B, they obtained the linear bound when
(X, A) is a log canonical Q-pair. For more details, we refer the reader to [DM17].



2.3. PROOF OF MAIN THEOREM 21

2.2. Preliminary

In this paper we will denote N := ) Angehrn and Siu proved the existence

of a quasi-psh function whose multiplier ideal sheaf has isolated zero set at y when we
pick one point y € Y.

THEOREM 2.2.1. [AS95] Let Y be a smooth projective n-dimensional variety,
and We fix m € N such that m(NN + 1)L is very ample. We choose a Kéhler form wy

on Y and a smooth positive metric by, on L such that /=10, = mw% where

N = @ Then for any point y € Y, there exist a quasi-psh function ¢ with neat
analytic singularities on Y and a positive number 0 < ¢y < 1, such that

(1) \ —1®L®N+1hg+1 + Y/ _165@ Z ﬁUJY
(2) y is an isolated point in the zero variety V(7 (e ¥)).

By the following theorem, a relative pluricanonical line bundle K%LY has a semipos-
itive singular hermitian metric which is equal to the fiberwise Bergman kernel metric.

THEOREM 2.2.2 ([BP0O8| Theorem 4.2 , [PT18] Collary 4.3.2). Let f: X — Y
be a surjective morphism of smooth projective varieties. Assume that there exists a
regular value y € Y such that H° (Xy,Kjeé;’) # 0. Then the bundle K;‘?;”Y admits

a singular hermitian metric h, with semipositive curvature current such that for any
regular value w € Y and any section s € H°(X,,, K$*) we have

2 2
i) < [ bl
X

for any z € X, up to the identification of Ky y|x, with Kx,. We regard |s|a as a
semipositive continuous (m,m) form where m = dim X,

2.3. Proof of main theorem

In this section, we prove Theorem 2.1.4.

THEOREM 2.3.1 ( = Theorem 2.1.4). Let f: X — Y be a surjective morphism
of smooth projective varieties, with Y of dimension n, and L be an ample line bundle
on Y. If y is a regular value of f, then for any a > 1 the sheaf

Fol KR © L
is generated by the global sections at y for all b > @ +a(n+1).

Let us first outline the proof. It is enough to show that for any regular value
y €Y, any section s € H°(X,, K@ f*(L)®"|x,) can be extended to X. By taking an
appropriate singular hermitian metric on K$* ' @ f*(L%?), we can prove there exists a
section Sy near X, such that Sy|x, = s by an L? extension theorem. To extend Sy to

X, we solve a 0-equation with some weight.
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2.3.1. Set up. We fix a regular value y € Y and a section s € HO(Xy,Kﬁ?S ®
fr(L)®*]x,). We may assume s # 0.

Let wx be a Kahler form on X. We will denote by Ay the smooth positive metric
on L and denote by wy the Kéhler form on Y as in Theorem 2.2.1. Since Ky ® L®"*!
is semiample by Mori theory and Kawamata’s basepoint free theorem (see [KIM98,
Theorem 1.13 and Theorem 3.3]), there exists a smooth semipositive metric hs on
Ky ® L®"*. We take the singular hermitian metric h, on Kg?‘/ly as in Theorem 2.2.2.

We will denote by L := K??%,_l) ® fH(Ky @ L& )8l g p*(LON+140) and b .=

af_l —
b—@—a(n—i—l) > 0. Define hy := ho® f*(h¢'hY 1) which is a singular hermitian
metric on L with semipositive curvature current. Note that Ky ® L = K$*® f*(L%?).

2.3.2. Local Extension. We choose a coodinate neighborhood V' near y and we
set U := f~1(V). We may regard V as an open ball in C" and y as an origin in C".
Since |s|; is bounded above on X, by Theorem 2.2.2, we obtain

50 i = [ Vol Vi
Yy

a—1) 2
:0/ Sl sl Vi,

(2.3.1) X,
2
S C// |S|¢Zxdey,wX
Xy
< 400,

where C' and C” are some positive constants. Therefore by the L? extension theorem in
[HPS18, Theorem 14.4], there exists Sy € H°(U, Kx®L®J (hz)) such that Sy|x, = s.

2.3.3. Global Extension. We denote by ¢ the quasi-psh function on Y as in
Theorem 2.2.1 and denote by ¢ := p o f. By Theorem 2.2.1, we can take a cut-off
function p near y such that

(1) supp(p) CC V,
(2) supp(dp) 2 v,
(3) Saupp(@p € FaVrwy < o0,

and put p := po f. We solve the global d-equation OF = 9(pSy) on X with the weight
of hfe_l/’. _ B

It is easy to check ”55UHif,wX < oo and H@(ﬁSU_)Hif’wX < 400. Therefore 8(ﬁ§U)
gives rise to a cohomology class [9(pSy)] which is [0(pSy)] = 0 in H'(X,Kx ® L ®
J(hz)). Since |SU|%Lf is bounded above on U by Theorem 2.2.2 ( if necessary we take
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U small enough ), we obtain
OGS o = | 100 etV

<C / |Suli e dVx g
f=1(supp(dp))

< / e YAV oy
=1 (supp(8p))

< 400,

(2.3.2)

where C'and C” are some positive constants. Therefore 9(pSy) is a O-closed (d, 1) form
with L value which is square integrable with the weight of hre™¥, where d = dim X.

We put § := ﬁ Then we obtain

V=104, 1y + (1 + ad)v/=1000
Oy + (0= D (Y TOxyrens )
+(N+1+0)f (V=10r,) + (1 + ad)yv/—100¢
(2.3.3) > f* ((N +1)V=10,,, + (1 + 045)\/—_135¢>
= 17((1+ a0) (VT oy +V/=1009) — A0V =10 s

(2—a)(l—e) ,,
om(N + 1) Flwy)
0

v

v

in the sense of current for any o € [0,1]. Therefore by the injectivity theorem in
[CDM17, Theorem 1.1], the natural morphism

H' (X, Kx @ L® J(hge ™)) = H' (X, Kx ® L® J (hy))

is injective. Since [0(pSy)] = 0 in H' (X, Kx ® L ® J(hg)), we obtain [0(pSy)] = 0
in H' (X, Ky ® L ® J(hge™")). Hence we obtain a (d,0) form F with L value which
is square integrable with the weight of hze™¥ such that OF = 9(pSy), that is we can
solve 0 equation.

Now we show that F'|x, = 0. To obtain a contradiction, suppose that F'(z) # 0 for
some = € X,. We may assume there exists an open set W near z such that F'(z) # 0
for any z € W and fW e ¥dVx,, = +oo since y is an isolated point in the zero
variety V(J(e?)) by Theorem 2.2.1. Since there exists a positive constant C' such
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that |F|if > C on W, we have

+00 > ||F||i2zfe—7/) = L ’F|if€_wde,wx 2 /I;I/‘F’%LLe_wde,wX

(2.3.4) .o / iV
w

= —‘—Oo,

which is impossible. B
Hence we put S := pSy — F € H°(X, Ky ® L), then S|x, = (pSv — F)|x, = s,
which completes the proof.

REMARK 2.3.2. In [Fuj19], Fujino proved the following theorem.

THEOREM 2.3.3. [Fujl9, Theorem 1.5] Let f: X — Y be a surjective morphism
of smooth projective varieties, with Y of dimension n, and L be an ample line bundle
on Y. For any a,s > 1 and any b > n® + min(2,a) the sheaf

(@ f(KS5H))Y © Ky @ L®
is generic globally generated.

As stated in [Fuj19, Remark 1.6], we proved above theorem by same method in the
case of s = 1. More precisely we have the follwing theorem.

THEOREM 2.3.4. Let f: X — Y be a surjective morphism of smooth projective
varieties, with Y of dimension n, and L be an ample line bundle on Y. If y is a regular
value of f, then for any a > 1 and any b > @ + 1 the sheaf

FAKE) © Ky @ L*

is globally generated at .

PRrROOF. We will denote by L := K%‘;,_l) ® f*(L®"). Note that Kx ® L =

K%IY ® f*(Ky ® L®). Define hy := ha® f*(hY), which is a singular hermitian metric

on L with semipositive curvature current. The rest proof of Theorem 2.3.4 is similar to
the proof of Theorem 2.1.4. O

2.4. On a log case

In this section, we prove Theorem 2.1.5.

THEOREM 2.4.1 (= Theorem 2.1.5). Let (X,A) be a Kawamata log terminal
Q-pair of a normal complex analytic variety in Fujiki’s class C and an effective divisor,
and Y be a smooth projective n-dimensional variety. Let f: X — Y be a surjective
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morphism, and L be an ample line bundle on Y. For any a > 1 such that a(Kx + A)
is an integral Cartier divisor, the sheaf

fx (OX (&(KX + A))) ® L%
is generated by the global sections at a general point y € Y either

()forallb>" nn ) fa(n+1) 0
(2) for all b > =D 4 9 when Ky is pseudo-effective.

PRrROOF. The proof is similar to Theorem 2.1.4 and [Deng17, Theorem C]. Take
a log resolution p: X’ — X of (X, A) we have a compact Kéhler manifold X’ such that

oKy = @t (a(Kx + A) + Y a0, B — Y afiF,

where ac;,af; € Ny and ). E; + Zj F}; has simple normal crossing supports. Since
(X, A) is a Kawamata log terminal Q-pair and A is effective, E; is an exceptional divisor
and 0 < 8; < 1. We denote by f’ := f o p, which is a surjective morphism between
compact Kahler manifolds. Since E; is an exceptional divisor, the natural morphism

HO(X', " (Ox (a(Kx + A)) ® f(L™)))
(2.4.1) = H(X', 5 (Ox (a(Kx + A)) @ [*(L™)) @ Ox (Y aiFy))
= H'(X' K @ f*(L)* © Ox/(>_ aBiFy))

is isomorphism. Thus it is enough to show that for any general point y € Y, the
restriction map

7Tyl HO(X/,K;GE?@f*(L@b)@OX/(Z (IﬁjF})) — H()(X;,K_%Z@f*( )®b’X/ ®OX’ ZG’BJ

is surjective.

In case (1), we choose the canonical singular hermitian metric hp on Ox/(> af;Fj)

1
as in [Dem12, Example 3.13]. We obtain J(hy) = Ox since >, E; + >, Fj has
simple normal crossing supports and 0 < ; < 1. By [Caol7, Theorem 3.5], there
exists an a-th Bergman type metric h, p on K®?/Y ® Ox/(>_ aB;F;). We note that

1
for any general point y of f such that J(hj|x;) = Ox;, and for any section s’ €
H(X,, KE?Z@OX/(Z afjFy)|x;), we have [/ < fX; |s'];; . < +ooon X by [Caol7,
Theorem 3.5].
We will denote by L := K?;?/Yl RO0x/ (> ab;Fj)® f* (Ky®L®n+1)®a 1®f (L) and

b= b_”("Tl a(n+1) > 0. Define a singlar hermitian metric hy := ha " th (ha=1hb)

on L. If y is a general point in Y such that J(h F] x;) = Ox;, the restriction map T,

)lx;)
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is surjective since the same proof works as in Section 3. By [Laz04b, section 9.5.D],

1 1
J(hilx;) = J(hi)|x; = Ox; for any general point y € Y. Therefore m, is surjective
for any general point y € Y, which completes the proof.

In case (2), since Ky is pseudo-effective, Kf?“_l ® L is a big line bundle. Therefore,
there exists a singular hermitian metric hy on K3 '® L with neat analytic singularities
such that \/_1®K§a—l®L’hY > 0 in the sense of current.

We will denote by L := K¢y} @ Oxi (Y afiFy) @ f*(K3* ' @ L) © f*(L®") and
_ a=1 1 - —
b:=b—N—22>0. Define a singular hermitian metric hy := h, % hi.f*(hyhy) on L. If

1
y is a general point in Y such that y ¢ {z € Y: hy(2) = +oo} and J(hi[x;) = Ox,
the restriction map m, is surjective since the same proof works as in Section 3. Since
the set {z € Y: hy(2) = 400} is Zariski closed, then 7, is surjective for any general

point y € Y, which completes the proof.
OJ



CHAPTER 3

Nadel-Nakano vanishing theorems of vector bundles
with singular hermitian metrics

ABSTRACT. We study a singular hermitian metric of a vector bundle. First, we prove
that the sheaf of locally square integrable holomorphic sections of a vector bundle with
a singular hermitian metric, which is a higher rank analog of a multiplier ideal sheaf, is
coherent under some assumptions. Second, we prove a Nadel-Nakano type vanishing
theorem of a vector bundle with a singular hermitian metric. We do not use an
approximation technique of a singular hermitian metric. We apply these theorems to
a singular hermitian metric induced by holomorphic sections and a big vector bundle,
and we obtain a generalization of Griffiths’ vanishing theorem. Finally, we show a
generalization of Ohsawa’s vanishing theorem.

3.1. Introduction

The aim of this paper is to study the vanishing theorem of a vector bundle with a
singular hermitian metric. Here is a brief history of a singular hermitian metric of a
vector bundle. A singular hermitian metric of a vector bundle is a higher rank analog of a
singular hermitian metric of a line bundle. The singular hermitian metric was originated
by de Cataldo [deC98|, and was later defined in a different way by Berndtsson and
Paun [BPO08|. We adopt the definition of a singular hermitian metric of a vector bundle
in [BP08]. They also defined the notion of a singular hermitian metric with positive
curvature, called positively curved. In [PT18], Paun and Takayama proved that a direct
image sheaf of an m-th relative canonical line bundle f,(mKx/y) can be endowed with
a positively curved singular hermitian metric for any fibration f: X — Y. Recently
Cao and Paun [CP17] used this result to prove litaka’s conjecture when the base space
is an Abelian variety. For more details, we refer the reader to [Paul6].

Although a singular hermitian metric of a vector bundle has been investigated in
many papers (for example [BP08], [PT18|, [Hos17|, [HPS18|, [Raul5], etc.), there
exist few results on vanishing theorems for vector bundles with singular hermitian
metrics. We explain the details of the investigations of a singular hermitian metric
of a vector bundle below. Let (X,w) be a compact Kéhler manifold and (E,h) be a
vector bundle with a singular hermitian metric. In [deC98], the sheaf of locally square
integrable holomorphic sections of E with respect to h, denoted by E(h), is defined as

E(h)e = {fo € O(E)s: |fals € Liget @ € X,
27
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which is a higher rank analog of a multiplier ideal sheaf. In this paper, we will denote
by O(FE), the stalk of E at z, defined by @HO(U, E). We consider the following

zelU
problems.

PROBLEM 3.1.1. (1) Is E(h) a coherent sheaf?
(2) Does there exist a Nadel-Nakano type vanishing theorem, that is, the vanishing
of the cohomology group H?(X,Kx ® E(h)) for any ¢ > 1 if h has some
positivity?

We do not know if E(h), unlike a multiplier ideal sheaf, is coherent, In [deC98|,
de Cataldo proved that E(h) is coherent and a Nadel-Nakano type vanishing theorem
if h has an approximate sequence of smooth hermitian metrics {h,} satisfying h, T h
pointwise and /—16 Eh, —Nw & Idg > 0 in the sense of Nakano for some positive and
continuous function n. However, h does not always have such an approximate sequence
(see [Hos17, Example 4.4] ). Therefore these problems are open.

Nonetheless, we can provide a partial answer to Problem 3.1.1. First we prove the
coherence of E(h) under some assumptions.

THEOREM 3.1.2. Let (X,w) be a Kéhler manifold and (E,h) be a holomor-
phic vector bundle on X with a singular hermitian metric. We assume the following
conditions.

(1) There exists a proper analytic subset Z such that h is smooth on X \ Z.

(2) he=¢ is a positively curved singular hermitian metric on E for some continuous
function ¢ on X.

(3) There exists a real number C such that /=10 — Cw ® Idg > 0 on X \ Z in
the sense of Nakano.

Then the sheaf E(h) is coherent.

Next we study the cohomology group HY(X, Kx ® E(h)) for any ¢ > 1. We prove a
vanishing theorem and an injectivity theorem for vector bundles with singular hermitian
metrics under some assumptions.

THEOREM 3.1.3. Let (X,w) be a compact Kdhler manifold and (E,h) be a
holomorphic vector bundle on X with a singular hermitian metric. We assume the
following conditions.

(1) There exists a proper analytic subset Z such that h is smooth on X \ Z.

(2) he™¢ is a positively curved singular hermitian metric on F for some continuous
function ¢ on X.

(3) There exists a positive number ¢ > 0 such that \/—_1@E7h —ew ® Idg > 0 on
X \ Z in the sense of Nakano.

Then H1(X, Kx ® E(h)) = 0 holds for any ¢ > 1.
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THEOREM 3.1.4. Let (X, w) be a compact Kahler manifold, (£, k) be a holomor-
phic vector bundle on X with a singular hermitian metric and (L, k1) be a holomorphic
line bundle with a smooth metric. We assume the following conditions.

(1) There exists a proper analytic subset Z such that h is smooth on X \ Z.

(2) he=¢ is a positively curved singular hermitian metric on E for some continuous
function ¢ on X.

(3) V=10g,; > 0on X \ Z in the sense of Nakano.

(4) There exists a positive number € > 0 such that /=10 ,—ey/—101;,, ®Idg > 0
on X \ Z in the sense of Nakano.

Let s be a non zero section of L. Then for any ¢ > 0, the multiplication homomor-
phism
xs: HI(X,Kx @ E(h)) - H(X,Kx ® L® E(h))
is injective.

Therefore we proved a Nadel-Nakano type vanishing theorem with some assump-
tions. If F is a holomorphic line bundle, these theorems were proved in [Fuj12]. We
point out we do not use an approximation sequence of a singular hermitian metric to
show these theorems.

Some applications are indicated as follows. First, we treat a singular hermitian
metric induced by holomorphic sections, as proposed by Hosono [Hos17, Chapter 4].
By calculating the curvature of this metric, we prove that we can apply Theorem 3.1.3
to Hosono’s example. Therefore we can apply a Nadel-Nakano type vanishing theorem
even if h does not have an approximate sequence such as [deC98]. Second, we generalize
Griffiths’ vanishing theorem. That is, HY(X, Kx ® Sym™(E) ®det E') = 0 holds for any
m > 0 and ¢ > 1 if £ is an ample vector bundle. We treat the case when F is a big
vector bundle. If £ is a big vector bundle with some assumptions, Sym™(F)®det F can
be endowed with a singular hermitian metric h,, satisfying assumptions such as those in
Theorem 3.1.3 (see Section 5.2). Therefore H1(X, Kx ® (Sym™(E) ® det E)(h,,)) =0
holds for any m > 0 and ¢ > 1.

Finally, we generalize Ohsawa’s vanishing theorem.

THEOREM 3.1.5. Let (X,w) be a compact Ké&hler manifold and (E,h) be a
holomorphic vector bundle on X with a singular hermitian metric. Let 7: X — W be
a proper surjective holomorphic map to an analytic space with a Kahler form 0. We
assume the following conditions.

(1) There exists a proper analytic subset Z such that h is smooth on X \ Z.

(2) he=¢ is a positively curved singular hermitian metric on E for some continuous
function ¢ on X.

(3) V=10pg, — 0 ® Idg > 0 on X \ Z in the sense of Nakano.

Then HY(W, m.(Kx ® E(h))) = 0 holds for any ¢ > 1.
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If h is smooth, this theorem was proved by Ohsawa [Ohs84].

3.2. Preliminaries

3.2.1. hermitian metrics on vector bundles. We briefly explain definitions and
notations of smooth hermitian metrics of vector bundles.

We will denote by (X, w) a compact Kéhler manifold and denote by E a holomorphic
vector bundle of rank  on X. For any point x € X, we take a system of local coordinates
(Vi21,...,2,) near z. Let h be a smooth metric on F and let ey, ..., e, be a local
orthogonal frame of E near . We denote by

/ / 2 : - v
_16E,h =v-1 Ciku de /\de®€)\ ®€H
1<5,k<n, 1<A,u<r
_ P
the Chern curvature tensor. For any u = Zlgjgn,1§>\gr Ujrg,; @ ex € T.X ® E,, we
denote by
Opn(u) = > CikAutinUkp
1<j,k<n, 1<Au<r

and

Ouwiay (u) = Z Wik UjA Uk,

1<j,k<n, 1<A<r
where w = /=13, ., o, wirdz; A dZ.

DEFINITION 3.2.1. [Dembook, Chapter 7 §6] For any real number C, we write
V—10g, > Cw ® idg in the sense of Nakano if 0gp(u) — Clygia,(uw) > 0 for any
ueTXRE.

We prove the following lemma of a positively curved singular hermitian metric.

LEMMA 3.2.2. For any point x € X, we take a system of local coordinate
(V;2z1,...,2,) near x and take a local holomorphic frame eq,...,e. of E on V. Let
U € V be an open set near x. We assume there exists a continuous function ¢ on X
such that he~¢ is a positively curved singular hermitian metric on £. Then there exists
a positive number My such that for any u € H(V, E)

ulf > My > fuil?
1<i<r

holds on U, where u = ), .. u;e;.

PROOF. We may assume u = uje;. By [HPS18, Chapter 16], we obtain

o (2) = sup LOIE) S ¥@IE) __|ul@)
e reBY | flne-c)v €Y lhe-c)v €Y |(he—c)v
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for any z € V. Since he™¢ is positively curved, ey | (he-¢yv is a plurisubharmonic function
on V. Therefore [e)|—c)v is bounded above on U. We take a positive number M,

such that |eY]pe-¢c)v < My, then we have |u|pe-c > ‘;\}—lll Since ¢ is a positive continuous

function, we can take a positive number M such that e¢ > M on X. We set My = %
and we obtain

Julfy = [ulfo-ce® > My|u [,
which completes the proof. O

3.2.2. L? estimates and harmonic integrals on complete Kahler manifolds.
We need an L? estimate on a complete Kiahler manifold. Let Y be a complete Kahler
manifold, w’ be a (not necessarily complete) Kéhler form and (F, h) be a vector bundle
with a smooth hermitian metric. The L* space L7 (Y, E). is defined by the set of
E-valued (n, q) forms with measurable coefficients on Y such that [, |f|2, ,dVi, < 400,
where dV,,, := w™/n! is a volume form on Y.

THEOREM 3.2.3. [Dembook, Chapter 7 §7 and Chapter 8 §6] [Dem82, Lemme
3.2 and Théoreme 4.1] Under the conditions stated above, we also assume that there
exists a positive number € > 0 such that \/—_1@E,h > ew’ ® Idg in the sense of Nakano.
Then for any ¢ > 1 and any g € Lig(Y, E). j, such that g = 0, there exists f €
L2, (Y, E). such that 9f = g and

n,qg—1
2 1 2
|f|w/’thw/ S - |g|w’,hdel‘
Y q¢ Jy

We use a fact of harmonic integrals to prove Theorem 3.1.4. For more details,
we refer the reader to [Fujl2, Section 2] or [Dembook, Chapter 8]. The maxi-
mal closed extension of the O operator determines a densely defined closed operator
9: L} (Y,E)uwn — L2 11 (Y, E)w . Then we obtain the following orthogonal decom-
position.

THEOREM 3.2.4. [Fuj12, Section 3], [Dembook, Chapter §|.
L2 (Y, E)wp = Imd & H™(Y, E) & Imd;, ,

holds, where 5:,,’,1 is the Hilbert space adjoint of d and H™4(Y, E) is the set of harmonic
forms defined by

H"(Y,E) :={f € Lfl,q(Y, E)p: Of = 5;;,7,1f =0}.

3.3. Coherence of F(h)
We prove Theorem 3.1.2.
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Proor. We may assume that X is a unit ball in C", F = X x C", and w is a
standard Euclidean metric. Let eq, ..., e, be a local holomorphic frame of £ on X. We
take an open ball U CC X. It is enough to show that there exists a coherent sheaf F
on U such that E(h), = F, for any z € U.

We will denote by G the space of holomorphic sections g € H°(U, E) such that

Jo 1917dVi, < co. We consider the evaluation map 7: G ®c Oy — E|y. We define
F :=Im(7). By Noether’s Lemma (see [GR84, Chapter 5 §6]), F is a coherent sheaf
on U.

CrAmM 3.3.1. For any x € U and any positive integer k,
Fe+ E(h), Nmk - By = E(h),
holds, where m,, is a maximal ideal of O,.

We postpone the proof of Claim 3.3.1 and conclude the proof of Theorem 3.1.2. We
fix x € U. By the Artin-Rees lemma, there exists a positive integer [ such that

E(h)y myg - By = my ™ (E(h), N, - Ey)
holds for any k > [. Therefore by Claim 3.3.1, we have
E(h)y = Fo + B(h)e Nmj - By C Fo +my - B(h), C B(h),.
By Nakayama’s lemma, we obtain E(h), = F,, which completes the proof. O
We now prove Claim 3.3.1.

PROOF. It is easy to check that F, + E(h), NmF - E) C E(h),; therefore, we
show that E(h), C F, + E(h), Nmk - Eg,.

We take f = )", fie; € E(h),. Then there exists an open neighborhood W CcC U
near x such that f; is a holomorphic function on W and fW |fI2dV,, < 4o00. Let p
be a cut-off function on W. We note that d(pf) is an E-valued (0,1) smooth form
such that [y |pf|2 ,dV., < +oo. We define the plurisubharmonic function ¢y to be
or(z) = (n+ k) log |z — z|* + C|z|* such that

V—10g; + \/—18&% ® Ildg > w® Idgon X \ Z in the sense of Nakano,
where C' is some positive constant. Since p is a cut-off function, we obtain

/ |3(pf)|iyhe_“"’“de < 400.
X

Since X \ Z is complete by [Dem82, Théoreme 0.2], there exists an E-valued (0, 0)
form F' =), Fie; on X \ Z such that

/ |F|7e #:dV, < / |5(pf)|i7he_‘p’“de < +oo and OF = J(pf)
X\Z X
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by Theorem 3.2.3. Here we may regard d(pf) as an (n, 1) form d(pf)dz' A--- Adz" on
X with values in — K.
Let G :=pf — F =) . G;e;, which is an E-valued (0,0) form on X \ Z. We obtain

/ |G|2dV,, < +00 and OG = 0.
X\Z

By Lemma 3.2.2 we have }; [, , |Gi|*dV,, < 400, and therefore G; extends to the
whole of U and G, is holomorphic on U by the Riemann extension theorem. Hence we
obtain G € G and G, € F,.

Let W’ be the set of interior points in {z € U : p(z) = 1}; then we have F'= f — G
on W'\ Z. Then F extends on W’ and F' is holomorphic on W’. It is obvious that
F, € E(h), from f, € E(h) and G, € F, C E(h),. By fX\Z |F|2e~#rdV,, < 400 and
Lemma 3.2.2, we have

> / || etmtiles e gy, < oo,

Therefore we obtain (F;), € m’; and F, € m’; - Ey.
Thus we have f, = G, + F, € F, + E(h), N m’; + By, which completes the proof of
Claim 3.3.1. 0

3.4. Vanishing theorems and injectivity theorems

Let (X, w) be a compact Kéhler manifold and (F, h) be a holomorphic vector bundle
with a singular hermitian metric on X. We assume the conditions (1) — (3) in Theorem
3.1.2. We will denote Y := X'\ Z. By [Fuj12, Section 3], there exists a complete Kahler
form w’ on Y such that w’ > w on Y. We study the cohomology group HY(X, Kx ®

THEOREM 3.4.1. Under the conditions stated above, we obtain the following
isomorphism: B
L2 (Y, E) N Kerd

Imo

1

Hq<X7 KX ® E(h))

for any ¢ > 0.

PrOOF. The proof will be divided into three steps.

Step 1 Setup.

Let U = {U;}jen be a finite Stein cover of X. By Theorem 3.1.2, the sheaf coho-
mology HY(X, Kx ® E(h)) is isomorphic to the Cech cohomology HY (U, Kx ® E(h)).
If necessary we take U; small enough, we may assume that there exists a Stein open set
Vj, a smooth plurisubharmonic function ¢; on V; and a positive number C; > 0 such
that

(1) U; ccC v,
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(2) C;' <e ¥ < CjonV;, and
(3) V=10g, +/—100p; > w' @ Idg on V; \ Z
for any j € A. We set Us;,..5, :== Ui, NU;; N --- N U, which is a Stein open set.
With the conditions above, it is easy to check the following two claims.

CrLAM 3.4.2. [Fuj12, Remark 2.19] For any E-valued (n,q) form u on Y with
measurable coefficients, [ul?, ,dV., < [ul2 ,dV, holds. If ¢ = 0, |ul2, ,dV., = |ul2, ,dV.,
holds.

CLAIM 3.4.3. For any ¢ > 1 and any g € L2 (Uigi..i, \ Z, E)uw  such that
dg = 0, there exists f € L2 _(Uiyi,.i, \ Z, E)ur p such that 9f = g and

n,g—1

[ Radescr [ v,
Uigiq...ig \Z Uigiq...ig \Z

where C" := max;cpC;.

Since Uiy, ...i, \ Z is a complete Kéhler manifold and V=105, +v/—100p;, > W' @ Idp
holds on Uj; \ Z, we can prove Claim 3.4.3 by Theorem 3.2.3.
Step 2 Construction of a homomorphism from Cech cohomology to Dolbeault coho-
mology.
We fix ¢ = {cigi,..i,} € H/(U, Kx ® E(h)). By the definition of Cech cohomology,
we have
(1) Cigiy...iq - HO(Uioil...iqy KX (24 E(h)) and
(2) dc:= iié(—l)kc
Let {p;}iea be a partition of unity subordinate to U. For each k € {0,1,...,q—1},
we define an E-valued form b;y;, ,, by

b ) DjenPiCiviniga TR =gq—1
i0i1...05 - ZjeA pjﬁbjioil_,_ik otherwise.

0i1.4ig

10%1...0k ... Tg+1 Uioil--lizﬁ—l

Then, we have
q q q

Hbigis ..ig 1 Yigin.ig = (_l)kbioil...i}g...iq = (—1)kpjcjioi1...z"k...z‘q = ij Z(_l)kcjioil...i}c...iq
JEA

k=0 k=0 JEA k=0

From dc = 0, we have
q

k ~ f— . . . . P . . .
E :p] E (_]‘) Cjioil...ik...iq - E p]clozl...lq - C’L()Zl...zq'

jEA k=0 FEA

Therefore, we obtain d{bj,..i,_,} = c¢. Similarly we obtain d{b,..i,} = {5bi0il--~ik+1}
for each k € {0,1,...,q — 2}.
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Therefore we obtain 9b;, |t,,\z, which is an E-valued (n, q) O-closed form on U;, \ Z.
Since we have

5{0b,} =0 and /

0b;, |2, ,dViy < / |0, |2 ,dV, < o0
Uig\Z ’ U; ’
by Claim 3.4.2, we can define a(c) := {0b;,} € L2 (Y, E).rn N Kerd. By the above
construction, we obtain the homomorphism
L2 (Y, E)u N Kerd
Imo '

Step 3 Construction of a homomorphism from Dolbeault cohomology to Cech coho-
mology.

We fix u € L2 (Y, E)w, N Kerd and define D := [ |uf2, ,dV., < +o0. By Claim
3.4.3, there exists vy, € L2 (Ui, \ Z, E).r, such that

n,g—1

UiO\Z a'nd / ‘/Uioyzj/ thw/ S C,2D.
Ui\ Z '

a: HI(U,Kx ® E(h)) —

g'UZ'O =Uu
We set u' := 6{v;, }. From du' = 0, there exists viy;, € L2 ,_5(Uipi, \ Z, E)ur such that
ioi1

Qvigiy = gy, and / |Vigis o ndVir < 20D
UiOil\Z

by Claim 3.4.3. We set u? := §{v;, } and we have du? = 0.
By repeating this procedure, we obtain vjy,..i,_, € Li7o(Uioil...iq_1 \ Z,E).n and

u? = 0{vipi,..i,.. }- By 5u§0i1miq =0, uf;, , is a holomorphic E-valued (n,0) form on
Uigir..i, \ Z. Since we obtain
q 2 _ q 2 12
/ |ui0i1...iq w,hde = / |ui0i1...iq|w’,hde' <q¢'C”"D < +o0
Uigiy ...iq Uigiy...iq

q

. q o . 1 -
by Claim 3.4.2, w;g;, |, \z extends on Uiy, i, and wg;, oy, ..\z i @ holomor

phic E-valued (n,0) form on Uigiy...i, by the Riemann extension theorem and Lemma

3.2.2. Therefore we can define S(u) == {uf; ; |v,, .\z} € HI(U, Kx ® E(h)). By

the above construction, we obtain the homomorphism

8. L2 (Y, E)w,lh N Kerd
Imo

It is easy to check whether v and § induce the isomorphism in Theorem 3.4.1. [

— HYU, Kx @ E(h)).

We finish this section by proving Theorem 3.1.3 and 3.1.4.

Proof of Theorem 3.1.3. By Theorem 3.4.1, we have HY(X, Kx®FE(h)) =
L2 (Y,E),s ,NKerd
Imod

L (Y,E),s ,NKerd
Imo '

By Theorem 3.2.3, we have = 0, which completes the proof.
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Proof of Theorem 3.1.4. By Theorem 3.1.2, Kx ® E(h) is a coherent sheaf on
X. Therefore, by the argument of [Fujl2, Claim 1|, Theorem 3.2.4 and Theorem
3.4.1, we obtain Imd = Imd, Imd;, , = Imd;, , and HY(X, Kx ® E(h)) = H"(Y, E).
Similarly, we obtain HY(X, Kx ® L ® E(h)) = H™(Y,L ® FE). By [Fujl12, Claim 2|,
the multiplication homomorphism xs: H™4(Y, E) — H™ (Y, L® E) is well-defined and
injective, which completes the proof.

3.5. Applications

3.5.1. Hosono’s example. In this subsection, we study a singular hermitian met-
ric induced by holomorphic sections, proposed by Hosono [Hos17, Chapter 4].

In this section, we assume that E has holomorphic sections sy,...,sy € H(X, E)
such that E, is generated by s1(y), ..., sy(y) for a general point y. For any point = € X,
we take a local coordinate (U;z,...,z,) near x and take a local holomorphic frame
et,...,e, of K on U. Write s; = Zl<j<r fijej, where f;; are holomorphic functions on
U. A singular hermitian metric h induced by s1,..., sy is given by

iy = Z fij fik-
1<i<N

By [Hos17, Example 3.6 and Proposition 4.1], h is positively curved and E(h) is a
coherent sheaf. Hosono pointed out that we can easily calculate the curvature of h in
the case N =r.

LEMMA 3.5.1. In the case N = r, there exists a proper analytic subset Z such
that vV—10g, = 0 on X \ Z. In particular we obtain v/—10g, > 0 on X \ Z in the
sense of Nakano.

PROOF. We take a finite Stein open covering {U;}iea. Under the conditions
stated above, an 7 x r matrix A% on Uj is defined by

AY) = fir.
Set Z; := {z € U;: ranlifl(")(z) < r}and W = {z € X: his not smooth at z}. We
have h = (h™1)™' = = where h~! is a cofactor matrix of h~'. Since the (i, )

element of h—! is a smooth function on X for any 1 < i,7 < r, we have W = {z €
X: det h™!(z) = 0}. By [Hos17, Lemma 4.3|, we have

det hil = Z ’det(Sil,Siw-”,Sirﬂ,

1<) <ig <<t <N

and therefore W is a proper analytic subset. We write Z := U;eaZ; U W, which is a
proper analytic subset.
By an easy computation, we have

V=10, = V=19(h"'0h) = V=1(90h™" — Oh~'hdh~")h.
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For any z € X \ Z, we may assume f;;(z) = ¢;;. From Bj’kl =D i<i<r fii fi, we have
8]3;;(;:) = 0fy;(z) and 57@},3(2) = 0fjr(2).
Thus, we obtain

(O ' hOR™")ju(z) = Y Of;0fu(z) = 00h3 (2),

1<i<r

which completes the proof. O

By Lemma 3.5.1 and Theorem 3.1.3, we obtain the following corollary.

COROLLARY 3.5.2. Let (L,hz) be a holomorphic line bundle with a singular
hermitian metric. We assume there exist a proper analytic subset Z and a positive
number € > 0 such that hy is smooth on X \ Z and \/—_1@,;’,% > ewon X.

Then, HY(X, Kx ® L ® E(hhy)) = 0 holds for all ¢ > 1 for any holomorphic vector
bundle £ and a singular hermitian metric i induced by s; - --s, € H(X, E).
In particular H4(X, Kx ® L ® E(h)) = 0 holds for all ¢ > 1 if L is ample.

We point out that such a metric hy on L as in Corollary 3.5.2 always exists if L is
big.

Now, we introduce Hosono’s example [Hos17, Example 4.4]. Set X = C? and
let £ = X x C? be the trivial rank-two bundle. We choose sections s; = e; and
S9 = ze; +wey. Then the singular hermitian metric Ag induced by s, s3 can be written

by
b I [(|w]* —wz
P \—zw |22 +1)°
Hosono proved the following theorem by calculating the standard approximation by
convolution of hg.

THEOREM 3.5.3. [Hos17, Theorem 1.2] The standard approximation defined
by convolution of hr does not have a uniformly bounded curvature from below in the
sense of Nakano.

Therefore, we can not apply the vanishing theorem of [deC98] to this example.
However, we can apply Corollary 3.5.2 to this example. Thus our results are new
results.

REMARK 3.5.4. We ask whether there exists a proper analytic subset Z such
that v/=10g; > 0 on X \ Z in the sense of Nakano for any singular hermitian metric h
induced by s; -+ - sy € H*(X, E) in the case N > r. This calculation is very complicated
and this question is open, but it is likely that the answer is “No”.
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3.5.2. Big vector bundles. Let @ be a Kéhler form on P(F). Inayama commu-
nicated to the author the following lemma.

LEMMA 3.5.5. Let E be a vector bundle and & be a singular hermitian metric
on Op(py(1). We assume that there exist a positive number e > 0 and a proper analytic

subset Z C P(E) such that h is smooth on P(E)\ Z, 7(Z) # X, and v/—1O
€w ® Z.d(’)[p(E)(l)-
Then h induces a singular hermitian metric h,, on Sym™(E) ® det E such that

(1) hy, is smooth on X \ 7(2),

(2) hy, is a positively curved singular hermitian metric, and

(3) V=1Ogymm(m)@det B > €w @ Idsymm(myederr o0 X\ 7(Z) in the sense of

Nakano.
PROOF. From Sym™(E)®det £ = 7. (Kpg),x @Opg)(m+7)), Sym™ (E)@det £

can be endowed with the L? metric h,, with respect to h. Therefore by the argument

of [Ber09, Theorem 1.2, Theorem 1.3, and Section 4], (1) and (3) are proved. By
[HPS18] and [PT18], (2) is proved. O

REMARK 3.5.6. If F is big, such a metric i on Op(g)(1) as in the assumption of
Lemma 3.5.5 always exists.

Thus, we can apply Theorem 3.1.3 to (Sym™(E) ® det E, h,,) and we have the
following corollary.

COROLLARY 3.5.7. Under the conditions stated in Lemma 3.5.5, HY(X, Kx ®
(Sym™(E) @ det E)(hy,)) = 0 holds for any m > 0 and ¢ > 1.

This corollary is a generalization of Griffiths’ vanishing theorem in [Gri69).

Opg) (1)1 >

3.6. On Ohsawa’s vanishing theorem

We use the results of [Ohs84]. Let Y be a complete Kahler manifold, w’ be a Kéhler
form and (E, h) be a vector bundle with a smooth hermitian metric. Let 7 be a smooth
semipositive (1,1) form on Y. Write

L?L,q(}/’ E)T,h = {f € L'?z,q(Y7 E)w'-l—T,h; llir(l)l/ |f|2ew’+7,hd‘/€w'+7 < +OO}
€ Y

By [Ohs84, Proposition 2.4], limcjo [, | 1%y rp@Vewr 1 and L7, (Y, E)j, do not depend
on the choice of the metric w’. We use Ohsawa’s L? estimate.

THEOREM 3.6.1. [Ohs84, Theorem 2.8] Under the conditions stated above, we
also assume that /—10g;, —7® Idg > 0on Y. Forany ¢ > 1 and f € L,ZW(Y, E)rp
such that df = 0, there exists g € L2, (Y, E),;, such that dg = f and

n,q—1

i [ 1o Vesir < i [ 1PrripViorsr
el0 Jy el0 Jy
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Now we prove Theorem 3.1.5.

PRrROOF. We take a complete Kéhler form w’ on Y := X'\ Z as in Section 4. The
proof of Theorem 3.1.5 is similar to those of [Ohs84, Theorem 3.1] and Theorem 3.4.1
with a slight modification.

Let U = {U,};jea be a finite Stein cover of W. By Theorem 3.1.2 and the Grauert
direct image theorem, m,(Kyxy ® E(h)) is coherent. Therefore the sheaf cohomology
HIY(W,n,(Kx ® E(h))) is isomorphic to the Cech cohomology HY(U, 7, (Kx & E(h))).
We point out the following claim.

Cramm 3.6.2. [Ohs84, Lemma 3.2] For any form g on W, |7%¢(z)|wine <
lg(7(z))|, holds at any = € X.

We fix ¢ = {cii,..i,} € HI(U, m.(Kx®E(h))). By the definition of Cech cohomology,
we have

(1) Cigiy..i, € HO(Uioil...iqaﬂ'*(KX ® E(h))) = HO(W_l(Uz‘oz'l...z‘q), Kx ® E(h)) and
(2) dc:= S (—1)ke =0.
Let {p;}jen be a partition of unity of . Based on Section 4, for each k €
{0,1,...,qg — 1}, we define an E-valued form b;,;, ,, by

- ZjeA W*(Pj)c_jz’oz‘l.l.z’q,l ifk=q—1
o ZjeA *(p;)O0bjigiy..i,  Otherwise.

.. ~ . —1 L. )
Zo’L1...Zk...’Lq+1|ﬂ' (Uzov,lmqurl)

As in Step 2 in the proof of Theorem 3.4.1, we obtain
(5{bioi1--~iq—1} =G and 5{61011%} = {5bi0i1~~-ik+l}
for each k € {0,1,...,¢ — 2}. B
Therefore we obtain 0b;,|--1(,,)\z, Which is an E-valued (n,q) O-closed form on

71 (U;,) \ Z. By Claim 3.6.2, |0(7*p;)|cwsno are bounded above by |9(p;)|, for any
e > 0 and |cim-1miq|fw+w*odV€w+w*U are independent of € by Claim 3.4.2. Therefore we
have §{0b;,} = 0 and

/ |5bi0 ‘zw’+ﬂ'*0',hd‘/6w'+ﬂ'*0 < / |5bio ‘szrﬂ*a,hd‘/éerTr*U
Wﬁl(UiO)\Z Wﬁl(UiO)

< lim |5bi0 ‘szrﬂ*a,hd‘/éerTr*U
€40 Wﬁl(Uio)
< +00

for any € > 0 by Claim 3.4.2. Thus, we may regard {0b;, } as an element of L2 (Y, E) 44
and denote by b := 0b;,. By Theorem 3.6.1, there exists a € L2 (Y, E), such that

n,q—1

da="b and lim al2 s n Ve 4o < +00.
40 Jy\z ’
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Write d} = b;, —a € an 1( YUis) \ Z,E)sp and d' := {d] }. We point out

== 5{b10} = {8bi0i1} and adl =0.
By Theorem 3.6.1, there exists a;, € L2 (7~ (Ui,) \ Z, E)o,5 such that

da;, = d;, and lim 10i |2 s n Ve v < 400
We write d2; = bigi, — @iy + a;, € an 2T N Uipiy) \ Z,E)op and d? == {dZ; }. We
point out that B B
d® = 5{bs,i,} = {Obiyi,i,} and Od* = 0.
By repeating this procedure we obtain dl;! ivr € Lo o(m Uigiyig 1) \ Z, E)opn and
di=t = {d?} 4,1} such that
(quil = 5{bi0i1~--iq—1} = ¢ and 5dq71 =0
We have
1
/ |quQ’Ll Zq 1 whdv / | 1011 Zq 1|2w’+7r*a,hde’+7r*a
T Uigiy .oig_1 \Z T Uigiyig_1 \Z
= lim d‘/ew ™o
10 Tr_l(Uioil_'_iq_l)\ | i0i1...0g—1 lew'+m*0,h '+
< +00.
By Lemma 3.2.2 and the Riemann extension theorem, alzm1 iy, €xtends on T (Ui iy 1)
and df(ml 4, 18 holomorphic on 7~ (Ui, ., , ). Therefore we obtain
dgmll ’Lq 1 E HO(W71<U7;07:1--~7;L171)7 KX ® E(h>) and 5dq71 =c
which completes the proof. O

REMARK 3.6.3. We ask whether, under the assumptions of singular hermitian
metrics as in Theorems 3.1.3 - 3.1.5, we can show higher rank analogies of a gener-
alization of the Kollar-Ohsawa type vanishing theorem by Matsumura [Mat16], an
injectivity theorem of higher direct images by Fujino [Fuj13|, an injectivity theorem of
pseudoeffective line bundles by Fujino and Matsumura [FujM16] and so on. It is likely
the answer is “Yes” and the proof may be similar to the original proof with a slight
modification.



CHAPTER 4

Characterization of pseudo-effective vector bundles
by singular hermitian metrics

ABSTRACT. In this paper, we give complex geometric descriptions of the notions of
algebraic geometric positivity of vector bundles and torsion-free coherent sheaves, such
as nef, big, pseudo-effective and weakly positive, by using singular hermitian metrics.
As an applications, we obtain a generalization of Mori’s result.

4.1. Introduction

In [Kod54], Kodaira proved that a line bundle L is ample if and only if L has
a smooth hermitian metric with positive curvature. After that, Demailly [Dem92]
gave complex geometric descriptions of nef, big and pseudo-effective line bundles. For
example, he proved that a line bundle L is pseudo-effective if and only if L has a
singular hermitian metric with semipositive curvature current. Ample, nef, big and
pseudo-effective are notions of algebraic geometric positivity. Thus, their works related
algebraic geometry to complex geometry.

The aim of this paper is to give complex geometric descriptions of notions of alge-
braic geometric positivity of vector bundles and torsion-free coherent sheaves. Griffiths
[Gri69] proved that if a vector bundle E has a Griffiths positive metric, then F is
ample (i.e. Opg) (1) is ample ). The inverse implication is unknown. We do not know
whether an ample vector bundle has a Griffiths positive metric. This is so-called Grif-
fiths’ conjecture, which is one of longstanding open problems. In recent years, Liu, Sun
and Yang [LSY13] gave a partial answer to this conjecture.

THEOREM 4.1.1. [LSY13, Theorem 1.2 and Corollary 4.6] Let X be a smooth
projective variety and E be a holomorphic vector bundle on X. If E is ample, then there
exists k& € Nyg such that Sym*(E) has a Griffiths (Nakano) positive smooth hermitian
metric.

Throughout this paper, we will denote by Sym”*(E) the k-th symmetric power of
E and denote by Ny the set of positive integers. Inspired by the works of Liu, Sun
and Yang, we study notions of algebraic geometric positivity of vector bundles by using
smooth and singular hermitian metrics.

THEOREM 4.1.2. Let X be a smooth projective variety and £ be a holomorphic
vector bundle on X.

41
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(1) E is nef iff there exists an ample line bundle A on X such that Sym*(E) ® A
has a Griffiths semipositive smooth hermitian metric for any k € Ny,.

(2) E is big iff there exist an ample line bundle A and k& € N+ such that Sym"(E)®
A7! has a Griffiths semipositive singular hermitian metric.

(3) E is pseudo-effective iff there exists an ample line bundle A such that Sym*(E)®
A has a Griffiths semipositive singular hermitian metric for any k € Nyg.

(4) E is weakly positive iff there exist an ample line bundle A and a proper Zariski
closed set Z such that Sym*(E) ® A has a Griffiths semipositive singular her-
mitian metric hy for any k € Ny and the Lelong number of h; at x is less than
2 forany z € X \ Z.

We will explain the definitions of big, pseudo-effective and weakly positive in Section
2. Further, we obtain similar results in case of torsion-free coherent sheaves. We will
discuss about torsion-free coherent sheaves in Section 5.

Nef, big, pseudo-effective and weakly positive are notions of algebraic geometric
positivity of vector bundles and torsion-free coherent sheaves. In particular, Viehweg
[Vie83a| proved that a direct image sheaf of an m-th relative canonical line bundle
f«(mKx/y) is weakly positive for any fibration f: X — Y. By using this result, he
studied Iitaka’s conjecture. A Griffiths semipositive singular hermitian metric, which
is a analogy of a singular hermitian metric of a line bundle and a Griffiths semipositive
metric, was investigated in many papers. By using Griffiths semipositive singular her-
mitian metrics, Cao and Paun [CP17] proved litaka’s conjecture when the base space
is an Abelian variety. Therefore, our results also relate algebraic geometry to complex
geometry.

We have some applications about our results.

COROLLARY 4.1.3. Let X be a smooth projective n-dimensional variety. If the
tangent bundle Tx is big then X is biholommorphic to CP".

This corollary is a generalization of Mori’s result: ”If the tangent bundle T’y is ample
then X is biholomorphic to CP"” since an ample vector bundle is big. This Corollary
was proved by Fulger and Murayama [FulM19, Corollary 7.8] by using Seshadri con-
stants of vector bundles . We give an another proof by using singular hermitian metrics.

4.2. A singular hermitian metric on Op(g) (1)

We study a singular hermitian metric on Op(g)(1) induced by a singular hermitian
metric on F.

LEMMA 4.2.1. Let X be a smooth projective n-dimensional variety, £ be a
holomorphic vector bundle of rank r on X, and A be a line bundle on X. Assume
that there exists m € N5 such that Sym™(E) ® A has a Griffiths semipositive singular
hermitian metric h,,. Then Opg) (m) ® m* A has a singular hermitian metric g, with
semipositive curvature current.
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Moreover for any x € X, there exist an open set € V' and a positive constant C',
such that g,, < Cyr*(det h,,) on 7= 1(V).

ProOOF. We will denote by 7,,,: P(Sym™(E)®A) — X. We have P(Sym™(F)) =
P(Symm(E) X A) and Op(symm(E))(l) 0% W:n(A) = OP(Synlm(E)®A)(1)~ Let M - ]P(E) —
P(Sym™(FE)) be a standard m-th Veronese embedding. Then we have 7 = m,, o t,,, and

Opg)(m) @ A = 17, (Opgymm(£)) (1)) @ 7°(A) = 5, (Opsymm(2)2.4)(1))-

By [PT18, Proposition 2.3.5], Op(sym™(B)24) (1) can be endowed a singular hermitian
metric g, with semipositive curvature current. Therefore, we put ¢, := 7,gm, which
is a singular hermitian metric with semipositive curvature current on Op(gy(m) @ 7*A.

We fix a point z € X. Since 7! (z) is compact, there exist an open set z € V and a
positive constant Cy such that g,, < Cyw (det hy,,) on 7, (V) by [PT18, Proposition
2.3.5]. Therefore, we have g,, < Cyr*(det hy,) on 7= 1(V). O

LEMMA 4.2.2. Let X be a smooth projective n-dimensional variety, £ be a
holomorphic vector bundle of rank r on X and A be a line bundle on X. Assume there
exist m € N5y and a point € X such that Sym™(E) ® A is globally generated at x.
Then there exist a singular hermitian metric g with semipositive curvature current on
Opp)(m) ® 7 A and a proper Zariski closed set Z C X such that g is smooth outside
T Z).

Moreover if there exists a Zariski open set U C X such that Sym™ (E)® A is globally
generated at x for any z € U, we can take Z such that ZNU = @.

PRrROOF. Let {U;} be a finite open cover of X such that U; is a coordinate neigh-
borhood and 7~ !(U;) is biholomorphic to U; x P"~1. We take a local holomorphic frame
e1,...,e. of E on U; and a local holomorphic frame e4 of A on U;. Let s1,...,sy be a
basis on H(X, Sym™(E) ® A). We put M := (™7"71). Write

- (e 5] «
5; = g fia€l" - €er"eq,
«

where f;, are holomorphic function on U; and the sum is taken over a = (o, -+ , ;) €
N7, such that a; + -+ + @, = m. The N x M matrix B? is defined by B = f,,.
Set Z; := {z € U;: rank B (z) < M} and Z := UZ;. Since Sym™(E) ® A is globally
generated at x, we have N > M and Z is a proper Zariski closed set of X.

We define the singular hermitian metric g with semipositive curvature current on
Opr)(m)®@m* A, induced by the global sections 7*(s1), - -+, 7*(sy) € HY(P(E), Op)(m)®
7*A) (see [Dem12, Example 3.14]). We will show that g is smooth outside 7~1(7).

We will denote by €Y, ..., eY the dual frame on EY. The corresponding holomorphic
coordinate on EY are denoted by (Wy,--- ,W,). We may regard 7= (U;) as U; x P L.
We take the chart {[W; :---: W,] € P"~': W, # 0}. We will define the isomorphism
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by
U x {W.#£0} — U, x ¢
(2 Wis s WD) = (it )

and we may regard U; x {W, # 0} as U; x C""1. Put 7, := % for 1 <1 <r—1and
N, := 1. In this setting, we have

Ope) (= Dvxcr—1 = {(2,7,€) € Uy x T x C": pi& = m;&;}

and the local section

e(’)ﬂ»(E)(—l)(Za(nlv"' 7777’—1)) = (27(7717”' 7777'—1)7(7717"' 7777"—171))’

The local section ep, 1) of P(E)(1) is defined by the dual of eo, , (-1). Then we
have

W*(Sj)|Ui><(CT*1 — Z fja(Z)n?l e ni‘:;l 1ar67(7’)1]p(E)(1)77* (eA)

by using the isomorphism H°(X,Sym™(E) ® A) ~ H°(P(E), Opg)(m) @ 7*(A)).
Since g is defined by 1/(35, -,y [7*(s5)[?), g is described on U; x C™~' by

Ho= (S0 1 falempt e )

1I<SjSN a

Therefore it is enough to show that H=1(z,ny,- -+ ,m,_1) # 0 for any (2,11, ,m_1) €
(U; \ W) x C"1. Tt is easily to check by the definition of Z and the standard linear
algebra.

The second statement is also easily proved by the definition of Z. 0

COROLLARY 4.2.3. Let X be a smooth projective n-dimensional variety, £ be a
holomorphic vector bundle of rank 7 on X and A be a line bundle on X. Assume there
exist m, b € N5g and a point € X such that Sym™°(E) @ (A ® det EV)? is globally
generated at x. Then there exist a Griffiths semipositive singular hermitian metric h
on Sym™(E) ® A and a proper Zariski closed set Z C X such that h is smooth outside
Z.

Moreover if there exists a Zariski open set U C X such that Sym™*(E) ® (A ®
det EV)? is globally generated at = for any x € U, we can take Z such that ZNU = @.

PrOOF. By Lemma 4.2.2 and dividing by b, there exist a singular hermitian
metric g with semipositive curvature current on Op(gy(m + ) ® 7*(A ® det EV) and a
proper Zariski closed set Z C X such that g is smooth outside 77!(Z). From det F ~
7. (Kppy/x @ Opgy(r)), we have

Sym™(E) ® A ~ m.(Kpg)/x @ Opgy(m +71) @ m*(A® det EV))
and the inclusion morphism

T (Kp(p) x @O0p(py (m+1)@m* (A®det EY)®J (9)) — mu(Kp(p) x @0p(5) (m+1)@1" (A®det EV))



4.3. PROOF OF MAIN THEOREMS 45

is generically isomorphism. By Theorem 1.4.5, Sym™(FE)® A has a Griffiths semipositive
singular hermitian metric h such that h is smooth outside Z (see [HPS18, Chapter
22]).

The proof of the second statement is same as above. O

4.3. Proof of main theorems

In this section, we prove Theorem 4.1.2. First, we study a pseudo-effective vector

bundle .

THEOREM 4.3.1. Let X be a smooth projective n-dimensional variety and E be
a holomorphic vector bundle of rank r» on X. The following are equivalent.

(A) E is pseudo-effective.

(B) There exists an ample line bundle A such that Sym"(E) ® A has a Griffiths
semipositive singular hermitian metric Ay for any £ € N.4. Moreover, for any
k € Ny, there exists a proper Zariski closed set Z, C X such that h; is smooth
outside Z;,.

(C) There exists an ample line bundle A such that Sym*(F) @ A has a Griffiths
semipositive singular hermitian metric h; for any k € Ny.

Moreover if E satisfies the condition (C), then F is weakly positive at any = € X \
Uken.o{2z € X: v(det hy, 2) > 2)}.

PRrROOF. (A) = (B). We take a point z € X such that E is weakly positive at
x and take an ample line bundle A such that A ® det EV is ample. For any a € Ny,
there exists b € Nog such that Sym“™(E) @ (A® det EV)? is globally generated at x.
By Corollary 4.2.3, the proof is complete.

(B) = (C). Clear.

(C) = (A). The proof will be divided into 3 steps.

Step 1. Preliminary We fix an ample line bundle H. By Siu’s Theorem [Dem12,
Corollary 13.3], the set Z; := {z € X: v(det h, z) > 2)} is a proper Zariski closed set.
We fix a point x € X \ UpZ;. We take a local coordinate (U; 2, - -, 2,) near x. Let
© =n(n+ 1)log|z — x|?, where 7 is a cut-off function such that n = 1 near z. Let hy
be a positive smooth hermitian metric on H. We take b € Ny such that

(1) A'® Ky' ® det BV ® H® is ample, and
(2) bv/=104,, + v/—109¢ > 0 in the sense of current.

From Sym**(E) @ H? ~ m.(Opg)(2ab) @ 7 H?), it is enough to show that the
restriction map

H(P(E), Opgy(2ab) @ ™ H?) — H°(r~ (), Opmy(2ab) @ 7 H?|1-1(1))

is surjective for any a € Ny.
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Step 2. Taking a singular hermitian metric From 7*(det E) ~ Kpp)x ®
Op()(r), we have

Op(r) (2ab)@7* H*" ~ Kp(p)@(Op(p)(2ab+1) 27" A)@r* (A '@ Ky '®det EY@H")@m*(H).
Since Sym2“b+T(E) ® A has a Griffiths semipositive singular hermitian metric hogpiy,
by Lemma 4.2.1, Opg)(2ab 4+ r) ® 7*A has a singular hermitian metric gogpy, with
semipositive curvature current. By Skoda’s theorem [Dem12, Lemma 5.6] and Lemma
4.2.1, there exist an open set x € V C X and a positive constant C' such that

(1) gaaprr < Cm*(det hogyrr) holds on 7= H(V),
(2) det hogyrr € LY(V), and
(3) ¢ = (n+1)log |z — z|* holds on V.

Since A™! ® Ki' ® det EY ® H® is ample, there exists a smooth positive metric g; on
A'@ Ky' @ det BV @ HP.

We put L := (Opm)(2ab + 1) @ mA) @ (A7 @ Ky' @ det EY @ H®) ® m*(H"),
7= Goapirm (g19%), and ¢ 1= 57" p. Then the following conditions hold.

(1) K]P(E) & Z ~ O]p(E)<2(Lb) ® 7 H?. N
(2) g is a singular hermitian metric with semipositive curvature current on L.
(3) For any a € [0,1], we have =107 + (1 + %)v/—190¢ > 0 in the sense of

current.

Step 3. Global extension by an L? estimate Fix a Kihler form Wp(E) ON P(E).
If necessarily we take V' small enough, we may assume 7~ '(V) is biholomorphic on
V' x P"1. Therefore, there exists sy € H(m~ V), Kp(g) ® L) such that SV |n-1() = $.
We take a cut-off function p on V' such that

(1) p =1 near x, and

(2) inf,,,,@,) P > —0.

We put p := 7*p. We solve the global d-equation OF = 9(psy) with the weight ge ™.
First, we have

(V) (V)

where C) is some positive constant. Similarly, it is easy to check ||0(psy)||2 Gopm < OO

Therefore J(psy) gives rise to a cohomology class [0(psy)] which is [0(psy)] = 0 in
HY(P(E), Kpipy ® L ® J(9))-



4.3. PROOF OF MAIN THEOREMS 47

Second, we have

B, = | o P e o 05

< 02/ B |7 (det h)|€_wden><E>JP’(E)
~L(supp(dp))
< +00,

where Cj is some positive constant. Therefore d(psy) is a d-closed (n + 1 — 1,1) form
with L value which is square integrable the weight of ge™Y.
By the injectivity theorem in [CDM17, Theorem 1.5], the natural morphism

HYP(E), Kppy @ L® J(Ge ™)) — H'(P(E), Kpmy @ L T (7))

is injective. Since [0(psy)] = 0 in HY(P(E), Kp(p) ® L ® J(3)), we have [0(psy)] = 0
in H'(P(E), Kp(py ® L ® J(Ge*)). Hence we obtain a (n +r — 1,1) form F with L
value which is square integrable with the weight ge™ such that OF = d(psy ).

We will show that F/|;-1,) = 0. To obtain a contradiction, we assume F(z) # 0 for
some point z € 77 (x). We take an open set x € W CC V, an open set W’ C P"~! and
a positive constant Cy such that W x W' CC 7~ (V) and |F|2 > C3 on W. Thus we
have

2 2 2
||F”§6_1/),OJ]P>(E) = / |F|§e—¢’wP(E) de]P’(E)7P(E) Z / |F|§6_w,u)]p(E) de]P’(E)vlp(E)
P(E) WX W'

> (Y / €7dewp(E),JP>(E)
W xW'

—nl —xl?
> Cs / e MBI AV, L e
W x W'
= —I—OO7

2

where Cy and Cs are some positive constant. This is a contradiction from || F[|Z_ ., s

+00.

Therefore we put S := psy — F € H(P(E), Kpg) ® L), then S|z-1) = (psv —
F)|z-1) = s, which completes the proof. Therefore, E is weakly positive at any
reX \ UrZ},. O

By the same argument, we have the following Corollary.

COROLLARY 4.3.2. Let X be a smooth projective n-dimensional variety and E
be a holomorphic vector bundle of rank » on X. The following are equivalent.

(A) E is weakly positive.



48 4. CHARACTERIZATION OF PSEUDO-EFFECTIVE BY SINGULAR HERMITIAN METRICS

(B) There exist an ample line bundle A and a proper Zariski closed set Z C X
such that Sym"(E) ® A has a Griffiths semipositive singular hermitian metric
hy for any k£ € N5y and hy is smooth outside Z.

(C) There exist an ample line bundle A and a proper Zariski closed set Z C X
such that Sym”*(E) ® A has a Griffiths semipositive singular hermitian metric
hy, for any k € Nog and Ug{z € X: v(det hy, z) > 2} C Z.

PRrOOF. (B) = (C) is clear. By Theorem 4.3.1, we obtain (C) = (A). We give a
proof of (A) = (B). By the definition, there exists a Zariski open set U such that E is
a weakly positive at any € U. We take an ample line bundle A such that A ® det EV
is ample. Fix a € Nyy. For any m € Ny, we define Z,, by the Zariski closed set of
points z € X such that Sym“*" E @ (A ® det EY)™ is not globally generated at x.
Then we obtain b € Ny such that Z, = Nyen. o Zpm. Thus, Sym(“”)b E®(A®det EV)b
is globally generated at any € X \ U by Z, C X \ U. By Corollary 4.2.3, Sym* E ® A
has a Griffiths semipositive singular hermitian metric A and h is smooth on U, the proof
is complete. O

The following corollary was already proved in [PT18]. We give an another proof.

COROLLARY 4.3.3. [PT18, Proposition 2.3.5]
Let X be a smooth projective variety and E be a holomorphic vector bundle on X.
If F has a Griffiths semipositive singular hermitian metric h, then E is weakly positive
at any x € {z € X: v(deth,z) = 0}. In particular, E is pseudo-effective.

PROOF. Since E has a Griffiths semipositive singular hermitian metric, Sym”*(E)
also has a Griffiths semipositive singular hermitian metric Sym”(h) for any k& € Ny
induced by h. Therefore, for any ample line bundle, Sym”*(E) ® A has a Griffiths
semipositive singular hermitian metric Sym*(h)h4, where h, is a smooth metric with
positive curvature on A. Since we have

Ukenoo12 € X : v(det Sym*(h)ha,z) > 2)} = {z € X: v(det h, z) > 0},
E is weakly positive at any x € {z € X : v(det h, z) = 0} by Theorem 4.3.1. O

REMARK 4.3.4. By Hosono [Hos17, Example 5.4], there exists a nef vector bun-
dle Ey such that Ey does not have a Griffiths semipositive singular hermitian metric.
Therefore, pseudo-effective (weakly positive) does not always imply the existence of a
Griffiths semipositive singular hermitian metric.

Next, we treat big vector bundles.

COROLLARY 4.3.5. Let X be a smooth projective n-dimensional variety and
be a holomorphic vector bundle of rank » on X. The following are equivalent.

(A) E is big.
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(B) There exist k € Nyg, an ample line bundle A and a proper Zariski closed set
7 C X such that Sym*(E)® A~! has a Griffiths semipositive singular hermitian
metric h and h is smooth outside Z.

(C) There exist an ample line bundle A and k € Ny such that Sym*(E)® A~! has
a Griffiths semipositive singular hermitian metric h.

PROOF. (A) = (B). There exist an ample line bundle A and b € N, such that
Sym®(E)® A~ is pseudo-effective. By Theorem 4.3.1, there exists an ample line bundle
H such that Sym™(E) ® A~* ® H has Griffiths semipositive singular hermitian metric
hy for any k € Nyg. Moreover, there exists a proper Zariski closed set Zj, such that hy
is smooth outside Z;. Therefore we take k € Ny such that A* @ H~! is ample, which
completes the proof.

(B) = (C). Clear.

(C) = (A). For any a € N5, we have Sym®(Sym”"(E) ® A~') ® A has a Griffiths
semipositive singular hermitian metric. By Theorem 4.3.1, Sym*(E) ® A~! is pseudo-
effective, which completes the proof. O

Proof of Corollary 4.1.3 . By Corollary 4.3.5, there exist £k € N, an ample line
bundle A and a proper Zariski closed set Z C X such that Sym*(Tyx) ® A~ has a
Griffiths semipositive singular hermitian metric h and h is smooth on X \ Z. it is
enough to show that K3'.C'>n + 1 for any # € X \ Z and for any rational curve C
through = by [CMSBO02, Cor 0.4] since X is uniruled.

Fix z € X \ Z and a rational curve C through z . First we will show that Tx|¢ is
ample. By [Laz04b, Theorem 6.4.15], it is enough to show that any quotient bundle of
Tx|c has positive degree. Fix a quotient bundle G of Tx|¢ and a smooth positive metric
ha on A. Sym” G has a quotient metric hgymt ¢ induced by (hha)|c on Sym*(Tx|c).
Therefore det G has a singular hermitian metric hge; ¢ with positive curvature current
by some root of det hgy, k. We have

v —1
degG:/cl(G)Z/C1(detG,hdetG):/
c c c 2m

thus T'x|c is ample. Since C'is a rational curve, we obtain

Txlc =2 Oc(a) @ -+ @ Oclay),

Odet G haer o > 0,

where q; is integer for any 1 <i <mn,a; > as > --- > a, and a; > 2. Since Tx|¢ is
ample, we have a, > 1, therefore K)_(l.C =a;+ -+ a, > n+ 1, which completes the
proof.

Finally, we study a nef vector bundle.

PROPOSITION 4.3.6 (cf. [DPS94] Theorem 1.12). Let X be a smooth projective
variety and E be a holomorphic vector bundle of rank r on X. E is nef (i.e. Opg(1)
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is nef ) iff there exists an ample line bundle A on X such that Sym*(E) ® A has a
Griffiths positive smooth hermitian metric for any k& € Ny.

PROOF. (=) We assume FE is nef. We take an ample line bundle H on X such
that H®@det EV is ample. There exists N € Ny such that F® (H ®@det EV)" is ample,
that is, Op(g)(1) ® 7*(H ® det EV)™ is ample. For any k € N5, we have

Sym*(E) ® H® (H @ det EY)N ™! ~ 7, (Kp(py)x ® Op(g)(k +7) @ 7*(H @ det EY)").

Since Op(p)(1) is nef, Opgy(k +1) @ 7*(H @ det EY)Y is ample. Therefore, Sym*(E) ®
H ® (H ® det EY)N~! has a Griffiths semipositive smooth hermitian metric for any
k € Nog. We put A := H?® (H ® det EY)N~1 the proof is complete.

(<) Let py: P(E) — P(Sym*(E)) = P(Sym*(E) ® A) be a standard k-th Veronese
embedding. Since Opgynk(m)e4)(1) is ample and Opg) (k) @7 A = 13 (Op(symt (p)2.4) (1)),
Opp)(k) @ 7 A is ample for any k € N5o. Therefore Op(gy(1) is nef. O

ExXAMPLE 4.3.7 (Cutkosky’s criterion). Let X be a smooth projective variety
and Ly, ..., L, be holomorphic line bundles. The vector bundle F is defined by E :=
"_,L;. By [Laz04a, Chapter 2.3.B], we have the following criterions.

(1) E is ample if and only if any L; is ample.
(2) E is nef if and only if any L; is nef.

We give a generalization of Cutkosky’s criterion of big and pseudo-effective.

LEMMA 4.3.8. (1) E is big if and only if any L; is big.
(2) E is pseudo-effective if and only if any L; is pseudo-effective. Moreover E is
pseudo-effective if and only if F has a Griffiths semipositive singular hermitian
metric.

PROOF. (1) (=) If E is big, then there exist an ample line bundle A, ¢ € Ny

and a Zariski open set U such that Sym®(F) ® A~! is globally generated at any x € U.
For any 1 <i <r, LY ® A~ is globally generated at any x € U. Therefore L; is big.

(1) (<) Let A be an ample line bundle and hy be a smooth metric with positive
curvature on A such that w = \/__1@147}114 is a Kahler form on X. Since L; is big, there
exist a singular hermitian metric h; and positive number ¢; such that v/—10 Lihy = €W.
We define a singular hermitian metric h on E by h = @]_;h;. We take ¢ € N5 such that
min;<;<, €; > 2/c. Then Sym®(E) ® A~! has a Griffiths semipositive singular hermitian
metric Sym®(h)h', which completes the proof.

(2) (=) We fix z € X such that E is weakly positive at . For any ample line bundle
A and a € Ny there exists b € Ny such that Sym®(E) @ A®® is globally generated at
z, and consequently L @ A is globally generated at x for any 1 < i < r, . Therefore
L; is pseudo-effective.
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(2) (<) Since L; is pseudo-effective, L; has a singular hermitian metric h; with
semipositive curvature current. We put h = ®]_,h,;, which is a Griffiths semipositive
singular hermitian metric on F. Therefore by Corollary 4.3.3, E is pseudo-effective. [J

4.4. On the case of torsion-free coherent sheaves

THEOREM 4.4.1. Let X be a smooth projective variety and F # 0 be a torsion-
free coherent sheaf on X.

(1) F is pseudo-effective iff there exists an ample line bundle A such that Sym*(F)"V®
A has a Griffiths semipositive singular hermitian metric for any k € Nyg.

(2) F is weakly positive iff there exist an ample line bundle A and a Zariski open
set U C X such that Sym"(F)"V ® A has a Criffiths semipositive singular
hermitian metric h; for any k£ € Ny and the Lelong number of h; at x is less
than 2 for any x € U and any k € Ny,.

(3) F is big iff there exist an ample line bundle A and k£ € N.; such that
Sym*(F)V ® A~! has a Griffiths semipositive singular hermitian metric.

PrOOF. We put F := F|x,, which is a vector bundle on Xr. Since Sym*(F)"V®
A is reflexive for any k € Ny(, we have

(4.4.1) H°(X 7, Sym*(F) ® A) ~ H(X, Sym"(F)"V ® A).

(1)(=). We assume that F is pseudo-effective We take a point € Xz such that
F is weakly positive at x and take an ample line bundle A such that A ® (det F)" is
ample. For any k € Ny, there exists b € Ny such that Sym* (F)"V @ (A® (det F)¥)" is
globally generated at . Therefore by 4.4.1, the vector bundle Sym**(E)® (A®@det EV)®
on Xr is globally generated at x.

By the argument of Corollary 4.2.3, there exists a Griffiths semipositive singular
hermitian metric h on (Sym*(F)" @ A)|x, = Sym"(E) ® A (h is smooth outside a
countable union of proper Zariski closed sets). From codim(X \ Xr) > 2, h extends to
X (symF(F)vea)- Therefore Sym*(F)¥V @ A has a Griffiths semipositive singular hermit-
ian metric h.

(1)(«=). From Xz C X gk F)vwea) for any k € Ny, the vector bundle Sym*(E)® A
on Xz has a Griffiths semipositive singular hermitian metric on for any £ € Ny,. By
using the argument of the proof of (C) = (A) in Theorem 4.3.1, there exists a point
r € Xr such that E is weakly positive at x. (We use Demailly’s L? estimate on a
complete Kéhler manifold [Dem82, Theorem 5.1 | instead of the injectivity theorem
in [CDM17]| since Xz may not be a weakly 1-complete. See also [PT18, Theorem
2.5.3]). Hence F is pseudo-effective.

(2) The proof is similar to (1) and the proof of Theorem 4.3.2. (We can take hy
such that hy is smooth on U N Xz if F is weakly positive at any point =z € U.)

(3)(=). The proof is similar to the proof of (=) in (1).

(«). By the Corollary 4.3.3 and (1), Sym**(F)"V ® A~! is pseudo-effective. O
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We give an application of Theorem 4.4.1. If a torsion-free coherent sheaf F has a
Griffiths semipositive singular hermitian metric A, then F is pseudo-effective. Moreover
if there exists a Zariski open set U such that h is continuous on UN X x, then F is weakly
positive at any z € UN Xx. Let f: X — Y be a surjective morphism between smooth
projective varieties. Then for any m € Ny, fi(mKx/y) has a Griffiths semipositive
singular hermitian metric h,,ys such that h,,ns is continuous over the regular locus
of f by [PT18, Theorem 1.1] or [HPS18, Theorem 27.1]. Therefore, f.(mKx/y) is
weakly positive at any point in the regular locus of f. This fact was already proved in
[PT18, Theorem 5.1.2].



CHAPTER 5

On projective manifolds with
pseudo-effective tangent bundle

ABSTRACT. In this paper, we develop the theory of singular hermitian metrics on
vector bundles. As an application, we give a structure theorem of a projective man-
ifold X with pseudo-effective tangent bundle: X admits a smooth fibration X — Y
to a flat projective manifold Y such that its general fiber is rationally connected.
Moreover, by applying this structure theorem, we classify all the minimal surfaces
with pseudo-effective tangent bundle and study general non-minimal surfaces, which
provide examples of (possibly singular) positively curved tangent bundles. This is a
joint work with Genki Hosono and Shin-ichi Matsumura.

5.1. Introduction

The structure theorem for compact Kéhler manifolds with semi-positive bisectional
curvature was established by Howard-Smyth-Wu and Mok in [HSW81] and [Mok88]
after the Frankel conjecture (resp. the Hartshorne conjecture) had been solved by Siu-
Yau (resp. Mori) in [SY80] (resp. [Mor79]). As an algebraic analog of semi-positive
bisectional curvature, Campana-Peternell and Demailly-Peternell-Schneider generalized
the structure theorem of Howard-Smyth-Wu to nef tangent bundles in [CP91] and
[DPS94|, and further they classified the surfaces and the 3-folds with nef tangent
bundle. (see [CP91] and [MOS+415] for the Campana-Peternell conjecture).

It is of interest to consider pseudo-effective tangent bundles as a natural generaliza-
tion of the above structure results. The theory of singular hermitian metrics on vector
bundles, which has been rapidly developed, is a crucial tool to understand pseudo-
effective vector bundles. Therefore, in this paper, we first develop the theory of singular
hermitian metrics on vector bundles (more generally torsion free sheaves). As one of
the main applications, we obtain the following structure theorem for projective mani-
folds with pseudo-effective tangent bundle (and also for compact Kéhler manifolds, see
Theorem 5.2.12).

THEOREM 5.1.1. Let X be a projective manifold with pseudo-effective tangent
bundle. Then X admits a (surjective) morphism ¢ : X — Y with connected fiber to a
smooth manifold Y with the following properties :

(1) The morphism ¢ : X — Y is smooth (that is, all the fibers are smooth).
53
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(2) The image Y admits a finite étale cover A — Y by an abelian variety A.
(3) A general fiber F of ¢ is rationally connected.
(4) A general fiber F of ¢ also has the pseudo-effective tangent bundle.

Moreover, if we further assume that T'x admits a positively curved singular hermitian
metric, then we have:

(5) The standard exact sequence of tangent bundles
O—)Tx/y—>TX—>(]§*TyHO

splits.
(6) The morphism ¢ : X — Y is locally trivial (that is, all the fibers are smooth
and isomorphic).

Theorem 5.1.1 is based on the argument in [Mat18b] and the theory of singular
hermitian metrics on vector bundles developed in this paper. In particular, Theorem
5.1.2, Theorem 5.1.3, and Theorem 5.1.4 play an important role in the proof. The-
orem 5.1.2, which can be seen as a generalization of [CM], gives a characterization
of numerically flat vector bundles in terms of pseudo-effectivity. The proof depends
on the theory of admissible hermitian-Einstein metrics in [BS94]. Theorem 5.1.3 and
Theorem 5.1.4 were proved in [HPS18] under the stronger assumption of the minimal
extension property. Our contribution is to remove this assumption, which enables us
to use the notion of singular hermitian metrics flexibly.

THEOREM 5.1.2. Let X be a projective manifold and let £ be a reflexive coherent
sheaf on X. If £ is pseudo-effective and the first Chen class ¢;(€) is zero, then £ is
locally free on X and numerically flat.

THEOREM 5.1.3. Let E be a vector bundle with positively curved (singular)
hermitian metric on a (not necessarily compact) complex manifold X. Let

0=>S—>F—>Q—0

be an exact sequence by vector bundles S and @ on X. If the first Chern class ¢;(Q)
is zero, the above exact sequence splits.

THEOREM 5.1.4. Let X be a compact Kahler manifold and let
0—-8—-&—-09—0

be an exact sequence of reflexive coherent sheaves S, £, and Q on X. If £ admits a
positively curved (singular) hermitian metric and the first Chen class ¢;(Q) = 0, then
we have:

(1) Q is locally free and hermitian flat.
(2) &€ — Q is a surjective bundle morphism on Xg.
(3) The above exact sequence splits on X.

Here X¢ is the maximal Zariski open set where £ is locally free.
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It is natural to attempt to classify all the surfaces X with pseudo-effective tangent
bundle, as an application of Theorem 5.1.1. In the case of the tangent bundle being nef,
a surface X has no curve with negative self-intersection, and thus X is always minimal.
However, a surface X with pseudo-effective tangent bundle may not be minimal, which
is one of the difficulties to classify them. In this paper, we classify all the minimal
surfaces (see subsection 5.3.1 for more detail):

THEOREM 5.1.5. We have:

(1) If a (not necessarily minimal) ruled surface X — C has the pseudo-effective
tangent bundle T, then the base C is the projective line P! or an elliptic
curve.

(2) Further, in the case of C' being an elliptic curve, the surface X is a minimal
ruled surface (that is, the ruling X — C'is a smooth morphism).

(3) Conversely, any minimal ruled surfaces X — C over an elliptic curve and over
the projective line C' = P! have the pseudo-effective tangent bundle T'y.

Moreover, we study the remaining problem (that is, the classification for blow-ups
of Hirzebruch surfaces) in detail. These studies provide interesting examples of pseudo-
effective or singular positively curved vector bundles.

5.2. Proof of the main results

DEFINITION 5.2.1. A torsion free coherent sheaf £ on a compact complex man-
ifold X is said to be pseudo-effective if for any integer m > 0 there exists a singular
hermitian metric h,, on Sym™ &£ such that

V/—100 log Wiyn > —won Xg
for any local holomorphic section u of Sym™ €. Here w is a fixed hermitian form on X.

The above definition is equivalent to the definition (5) below when X is a projective
manifold (see [Iwal8b, Theorem 1.3]). This section is devoted to the proof of the main
results.

5.2.1. Numerically flat vector bundles. In this subsection, we give a proof for
Theorem 5.1.2 after we prove Lemma 5.2.2 and Lemma 5.2.4 for preparation. Lemma
5.2.2, which easily follows from the result of [DPS94, Proposition 1.16], is quite useful
and often used in this paper.

LEMMA 5.2.2. Let X be a projective manifold and let £ be an almost nef torsion
free coherent sheaf on X.
(1) Any non-zero section 7 € H°(X,£Y) is non-vanishing on Xg.
(2) Let S be a reflexive coherent sheaf such that detS is pseudo-effective and let
0 — S — &Y be an injective sheaf morphism. Then S is locally free on X¢ and
the above morphism is an injective bundle morphism on Xe.
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PrOOF. In [DPS94], the same conclusion was proved for nef vector bundles.
We denote by Z a countable union of proper subvarieties of X satisfying the definition
of almost nef sheaves. We may assume that X \ X¢ C Z by adding the subvariety
X\ X¢ into Z.
(1) Let 7 € H°(X,EY) be a non-zero section. For an arbitrary point p € Xg, by taking
a complete intersection of ample hypersurfaces, we construct a curve C' passing through
p such that C' ¢ Z. We may assume that C' C X¢ by codim(X \ X¢) > 2. Then &|¢
is a nef vector bundle thanks to C' C X¢, and thus it follows that the non-zero section
7| is non-vanishing from [DPS94, Proposition 1.16]. In particular, the section 7 is
non-vanishing at p.
(2) Following the argument in [DPS94], we obtain the non-zero section

7€ HY(X,APEY @ det SY)

from the induced morphism det S — APEY. Here p := rankS. We remark that APE ®
det § is also almost nef by the assumption on §. Hence, by applying the first conclusion
and [DPS94, Lemma 1.20] to 7, we can obtain the desired conclusion. O

LEMMA 5.2.3. Let X be a compact complex manifold and let £ be a pseudo-
effective torsion free coherent sheaf on X. Then the same conclusion as in Lemma 5.2.2

holds.

PrROOF OF LEMMA 5.2.3. We will prove only the conclusion (1). For the metric

h., on Sym™ & satisfying the property in Definition 5.2.1, we consider the function f,,
on X defined by

1
Jm = —1og |7y
m

By the construction of h,,, we have
— 1
V=190f, > ——uw,
m

and thus its weak limit (after we take a subsequence) should be zero. On the other
hand, when we assume 7 has the zero point at some point p € Xg, it can be shown
that the Lelong number of f,, is greater than or equal to one. This is a contradiction
to the fact that the weak limit is zero. Indeed, the section 7™ can be locally written as
" =Y 7re;. Here {e;}i_; is a local frame of £, I is a multi-index of degree m, and
er == [ [;e; €i- It follows that the holomorphic function 7; has the multiplicity > m at
p from 7 = 0 at p € X¢. It can be seen that |(es, es)ny | is bounded since log |ulsy is
almost psh for any local section u (for example see [PT18, Lemma 2.2.4]). Hence we
can easily check that

7y, < C Yl
I

This implies that the Lelong number of f,, is greater than or equal to one. 0J
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LEMMA 5.2.4. Let X be a projective manifold and £ be a vector bundle on X.
Let Xy be a Zariski open set in X with codim(X \ Xy) > 2 + 4. Then the morphism
induced by the restriction
H’(X,E) — H’(X,, E)

is an isomorphism for any 5 <.

PRrROOF. The proof is given by the standard argument in terms of ample hyper-
surfaces and the induction on dimension. O

Theorem 5.2.5, which is a slight generalization of [CM], heavily depends on the
theory of admissible hermitian-Einstein metrics developed in [BS94].

THEOREM 5.2.5 (=Theorem 5.1.2, cf. [CM]). Let X be a projective manifold
and let £ be a reflexive coherent sheaf. If £ is pseudo-effective and the first Chen class
c1(€) is zero, then & is locally free and numerically flat.

PrROOF OF THEOREM 5.2.5. The induction on the rank r of £ will give the proof.
Reflexive coherent sheaves of rank one are always line bundles (see [Har80]), and thus
the conclusion is obvious in the case of r = 1. It is not so difficult to check the numerical
flatness of £ if £ is shown to be locally free (see the proof in [DPS94, Theorem 1.18]
or the argument below). We will focus on the proof of local freeness.

In the proof, we fix an ample line bundle A on X. In the case of r > 1, we take a
coherent subsheaf & with the minimal rank among coherent subsheaves of £ satistying
that [y c1(S) - c1(A)"" > 0. We may assume that S is reflexive by taking the double
dual if necessary. Now we consider the following exact sequence of sheaves:

(5.2.1) 0-S—-E&8—-0:=E/S—0.

The quotient sheaf Q := £/S is pseudo-effective. In particular, the first Chern class
¢1(Q) is also pseudo-effective. On the other hand, we have

0= Cl(g) = CI(S) + Cl(Q).
Then it follows that ¢;(S) = ¢1(Q) = 0 since ¢;(Q) is pseudo-effective and we have

| al@-aty == [ a@)-a@r <o

By applying Lemma 5.2.2 to Q¥ — &Y, we can see that Q (and thus S) is a vector
bundle on X¢ and the above morphism is a bundle morphism on Xg.

We first consider the case where the rank of S is equal to r = rank £. In this case,
we obtain & = £. Indeed, it follows that S = £ on Xg since the bundle morphism
S — £ on Xg is an isomorphism. Then we can easily check § = £ by the reflexivity
and codim(X \ X¢) > 3. Further we can prove that

/X (€) - er (A2 = 0.
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Indeed, for a surface S := HiNHyN---N H,_5 in X constructed by general members
H; of a complete linear system A, it follows that &£|s is a pseudo-effective vector bundle
from codim(X \ X¢) > 3. Hence £|g is numerically flat on S, and thus c2(€|g) = 0 (see
[DPS94| or [CH17, Corollary 2.12]). We can easily check that

/ es(E) - er(A)2 :/02(5|5) 0.
X S
By the assumption of ¢;(€) = 0 and the result of [BS94, Corollary 3|, we can conclude
that £ is a hermitian flat vector bundle on X from the stability of the reflexive sheaf
S = &. Therefore £ is locally free and numerically flat.

It remains to consider the case of rankS < rank&. In this case, we consider the
surjective bundle morphism

A" E@det Q¥ — S

on Xg. By codim(X \ X¢) > 3 and ¢;(Q) = 0, the reflexive sheaf S is pseudo-effective.
Therefore we can conclude that & is a numerically flat vector bundle on X by the
induction hypothesis.

On the other hand, the sheaf Q itself may not be a vector bundle, but, the reflexive
hull @YV is a vector bundle on X by the induction hypothesis. The extension class
obtained from the exact sequence (5.2.1) on X¢ can be extended to the extension class
(defined on X) of S and Q@YY by Lemma 5.2.4. The extended class determines the
vector bundle whose restriction to X¢ corresponds to £. This implies that £ is a vector
bundle by the reflexivity of £. O

5.2.2. Splitting theorem for positively curved vector bundles. In this sub-
section, we prove Theorem 5.1.3 and Theorem 5.1.4.

LEMMA 5.2.6. Let Q be a reflexive coherent sheaf on a compact complex man-
ifold X. If Q admits a positively curved singular hermitian metric gg and ¢;(Q) = 0,
then we have:

(1) (Q,go) is hermitian flat on Xo.
(2) If we further assume that X is Kéhler, then Q is a locally free sheaf on X and
go extends to a hermitian flat metric on X.

PROOF. (1) We follow the argument in [CP17]. The following lemma proved
by Raufi [Raulb| is essential:

LEMMA 5.2.7 ([Raul5, Thm 1.6]). Let E be a holomorphic vector bundle and
hg be a positively curved singular hermitian metric on E. If the induced metric det hg
on the determinant bundle det E is non-singular (that is, smooth metric), then the
curvature current /=10y, of hg is well-defined as an End(E)-valued (1,1)-form with
measure coefficients.
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In our situation det gg is a positively curved singular hermitian metric on the deter-
minant bundle det Q. By ¢;(Q) = 0, the curvature v/—10e 4, of det go is identically
zero on Xo. In particular, it can be seen that det gg is non-singular. Then, by Raufi’s
result, the curvature current /=10 = /=10, of gg is well-defined on Xo.

We locally write the curvature v/—10 as

V—10 = Z ujgagdzj ANdzre, ® eg,
j7k7a7/8

where (z1, ..., z,) denotes a local coordinate and ey, ..., e, denotes a local frame of Q.
Then, by 0 = /=16ge 4o = vV —1trO,,, we obtain

Z Z ujgaadzj A dzF = 0.
gk

«

Since gg is positively curved,
Z ,ujgaadzj AdZF >0
gk

for every .. Then we have that pz.; = 0 for every j, k, a.
For every « and 3, we have that

a_ﬁ  —,
Re(£%¢ Z,uj;agvjvk) > 0.
4k

From this we can conclude that .5 = 0 for every j, k, o, § and thus v—160,, = 0.

(2) It follows that Q is polystable from (1) and [BS94, Theorem 3]. We have
codim(X \ Xg) > 3 and (Q, g¢) is hermitian flat on Xg. Hence it can be shown that
c1(Q) =0 and ¢»(Q) = 0. We can see that Q is actually locally free and hermitian flat
by [BS94, Theorem 4]. O

We prepare the following lemma for the proof of Theorem 5.1.3.

LEMMA 5.2.8. Let (E, h) be a hermitian flat vector bundle on a complex manifold
X. Then for any point € X and a basis e ,,...,¢e,, on the fiber F,, there exists a
local holomorphic frame ey, . .., e, near x such that e;(x) = e;, and (e;, €;);, is constant.

PROOF. Let D be the Chern connection associated to (F,h). Then, by flatness,
we can take a local frame {e;} around z such that De; = 0. We can assume that e;(z) =
e;.- Since D is compatible with h, we have that d{e;, e;), = {De;, e;}n+{ei, Dej}p, =0,
thus (e;, e;), is constant. Moreover, taking the (0, 1)-part of De; = 0, we obtain that
éej = 0, which shows that e; is holomorphic. Ol
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THEOREM 5.2.9. (=Theorem 5.1.3) Let E be a vector bundle with positively

curved (singular) hermitian metric g on a (not necessarily compact) complex manifold
X. Let

0=>S—>F—->Q—0
be an exact sequence of vector bundles on X. If the first Chern class ¢;(Q) is zero, the

above exact sequence splits.

PROOF OF THEOREM 5.2.9. The following proof is a generalization of [Hos17,
Theorem 5.1]. We will work on dual bundles. By taking the dual, we have the following
exact sequence

(5.2.2) 0—-Q—E" — 8 —0.

Then we have a negatively curved singular hermitian metric h¥ whose restriction to QY
is flat by (the dual of) Lemma 5.2.6 (1). Therefore, by Lemma 5.2.8, we can take a
holomorphic orthonormal frame (s, ..., kg) of Q" on a small open set U*. Let €; be

3 a 4 « e o' « 3
the image of x$ in EV. Take €7, ,,..., €7,  such that (ef,... €7, ,) is a local frame of

EY. Let 0§ be the image of €} in S¥. We remark that (of,,,...,0f,,) is a local frame
of SV. We will write the transition function of Qv and SV as follows:
Vv \2
o= YR o R,
o - cpgﬁaﬂ,{{f 4o O BB,

SV.aB B SV.aB B
a P— ’ DY )
g1 = PuiighiTg T+ Pyl ghsOgrs

SV.aB B SVaB B
« _ ) .. ’
Ogrs = Plisgr10g1+ -+ PrlorsOgys.

The transition functions for EV can be written as

Vv Vv

€ = LS Lo 4 <I>?q ’aﬂeqﬁ,

' \
€ = CID(?I ’O‘Be? + -+ CIDquv’aﬂequ,

_ EY,aB _f EY,ap SV.aB B SV,ap
e = Puiver o+ Vel P o+ i
(6% — @Ev»aﬁ B + . _|_ @EV,O{B ,8 + @vaaﬁ :8 _|_ .. + @vaaﬁ 5
Cgts = g+s,1 €1 ats,q €q q+s,9+1€g+1 q+s,q+sCq+s

For short we will write the coefficient matrix as

q)EV7CY6 . @Qv’aﬁ 0
- \I;a/o’ (I)Sv,aﬁ :
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Next, let h* be the matrix
<€?’ 6(11>h <€?7 €g>h e <€?7 63—&-5)/1
h® = : :
<€3—0—s7 € )n T <€?+s7 €3+s>h

Note that the upper-left ¢ X ¢ -matrix is constant by the choice of €7, ..., €. Since h is
negatively curved, by [Hos17, Proposition 5.2|, coefficients of the lower-left s x g-matrix
is holomorphic (say ¢“). Then we can write as

(2 7).
where C'* is a ¢ X g-matrix whose coefficients are constant on U®. By the equality
he = QF Bpf(tQEYab),

we have

C* = U BB (1Q7.0B),

¢~ = WPCH(1PQY.0B) - 95 P B (1pQ7.0),
From these equalities, it follows that

67(C) 7 = W@ ) 4 e () (00

On the other hand, the extension class of the given exact sequence can be calculated
as the cohomology class of the Cech 1-cocycle

q+s q
{ >N Wk @ (03) € HO(Uaﬂ,cf)(QV@s»}
A=qg+1 p=1 of

qgt+s q
{ 2 ZZW (®9"7)" >ﬂm3®<o—i>v}
A=q+1 p=1 v=1 aB

It is the differential of the following Cech 0-cochain

{Z D (M (C) ks @ (05)Y € HO(Ua, O(QY @ s>)} :

v=1 A=¢+1 a

thus the extension class is zero. Therefore the given sequence (5.2.2) splits. 0

THEOREM 5.2.10 (=Theorem 5.1.4). Let X be a compact complex manifold and
let

0SS —=E€—-0—=0



62 5. ON PROJECTIVE MANIFOLDS WITH PSEUDO-EFFECTIVE TANGENT BUNDLE

be an exact sequence of reflexive coherent sheaves S, £, and Q on X. If £ admits a
positively curved (singular) hermitian metric and the first Chen class ¢1(Q) = 0, then
we have:

(1) Q is locally free and hermitian flat.
(2) € — Q is a surjective bundle morphism on Xg.
(3) The above exact sequence splits on X.

PrROOF OF THEOREM 5.2.10. The conclusion (1) follows from Lemma 5.2.6 and
the conclusion (2) follows from Lemma 5.2.2. Also, from Theorem 5.2.9, it follows that
there exists a bundle morphism j : Q — £ on X such that

E :S@](Q) on Xg.

By taking the pushforward ¢, by the natural inclusion ¢ : X¢ — X and the double dual,
we obtain

(.6)" = (i.5)"" @ (i.5(Q))" on X.

By codim(X \ X¢) > 3 and the reflexivity, we have & = (i,)YY, S ¥ (i,S)YY, and
Q =~ (i,7(Q))"Y. This finishes the proof. O

5.2.3. Pseudo-effective tangent bundles. This subsection is devoted to the
proof of Theorem 5.1.1.

THEOREM 5.2.11 (=Theorem 5.1.1). Let X be a projective manifold with pseudo-
effective tangent bundle. Then X admits a morphism ¢ : X — Y with connected fiber
to a smooth manifold Y with the following properties:

(1) The morphism ¢ : X — Y is smooth (that is, all the fibers are smooth).
(2) The image Y admits a finite étale cover A — Y by an abelian variety A.
(3) A general fiber F of ¢ is rationally connected.

(4) A general fiber F of ¢ also has the pseudo-effective tangent bundle.

Moreover, if we further assume that T'x admits a positively curved singular hermitian
metric, then

(5) The following exact sequence splits:
0— Tx/y — Ty — qb*Ty — 0.

(6) The morphism ¢ : X — Y is locally trivial (that is, all the fibers are smooth
and isomorphic).

PrROOF OF THEOREM 5.2.11. For a projective manifold X with the pseudo-effective
tangent bundle T'x, we consider an MRC fibration ¢ : X --» Y to a projective manifold
Y, and take a resolution 7 : X — X of the indeterminacy locus of ¢. Here we have the
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X
x-?_ vy
(1) To prove the conclusion (1) (and also (3)) by using [H6r07, Corollary 2.11], we
will construct a foliation on X (that is, an integrable subbundle of Ty) whose general
leaf is rationally connected. We will show that the relative tangent bundle T'y/y C Tx
(which is defined only on a Zariski open set of X) can be extended to a subbundle
of Tx on X. If it can be shown, it is not so difficult to check that this subbundle is
integrable and its general leaf is rationally connected (that is, all the assumptions in
[H6r07, Corollary 2.11] are satisfied).
Now we have the exact sequence of coherent sheaves

following commutative diagram:

0— ¢"Qy — Qg — Qx)y = Qx /0" Qy — 0.

Then we obtain the injective sheaf morphism 0 — 7,¢*Qy — Qx by taking the push-
forward. Here we used the formula 7,025 = Qx. By taking the dual, we obtain the
exact sequence

(5.2.3) 0— S:=Kerr — Tx —— Q= (m.0"Qy)".

We remark that the above sequence corresponds to the standard exact sequence of
tangent bundles on a Zariski open set where ¢ is a smooth morphism.

The morphism r is generically surjective, and thus the reflexive sheaf @) is also
pseudo-effective. In particular, the first Chern class ¢;(Q) is also pseudo-effective. On
the other hand, it follows that the image Y of MRC fibrations has the pseudo-effective
canonical bundle Ky from [BDPP13]| and [GHS03]. Further Q coincides with the
usual pullback of Ty on X,. Here X is the maximal Zariski open set where ¢ is a
morphism. Hence, by codim(X \ Xy) > 2, it can be shown that

—01(Q) = 01(7T*<5*QY) = 01(7T*$*KY)

is pseudo-effective.

By the above argument, we can see that Q is a pseudo-effective reflexive sheaf with
¢1(Q) = 0, and thus we can conclude that Q is a numerically flat vector bundle on X
by Theorem 5.1.2. By applying Lemma 5.2.2 to 0 — QY — Qy induced by (5.2.3), it
can be seen that the sequence (5.2.3) is a bundle morphism on X. In particular, we
can see that ¢ is smooth on X (since the sequence (5.2.3) is not a bundle morphism on
the non-smooth locus of ¢). The subbundle S defined by the kernel corresponds to the
relative tangent bundle T,y defined on X,. Hence & determines the foliation on X
since Ty y is integrable on X (for example, see [Mat18b, subsection 2.2]). Further,
its general leaf is rationally connected. Indeed, there exists a Zariski open set Y7 in Y
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such that ¢ : X; := ¢~1(Y}) — Y; is a proper morphism since ¢ : X --+ Y is an almost
holomorphic map (that is, general fibers are compact). A general leaf of S corresponds
to a general fiber of ¢ by & = T'x/y on X, and thus it is rationally connected. Therefore
we can choose an MRC fibration to be holomorphic and smooth by [H6r07, Corollary
2.11]. We use the same notation ¢ : X — Y for the smooth MRC fibration.

(2) By (1), we have the standard exact sequence
0— Tx/y — TX — ¢*Ty — 0,

and also we have already checked that ¢*Ty is pseudo-effective and c¢;(¢*Ty) = 0. The
pull-back ¢*Ty is numerically flat by Theorem 5.1.2, and thus 7Ty is also numerically
flat. The Beauville-Bogomolov decomposition (see [Bea83]) asserts that there exists a
finite étale cover Y’ — Y such that Y” is the product of hyperkahler manifolds, Calabi-
Yau manifolds, and abelian varieties. Let Z be a component of Y’ of hyperkahler
manifolds or Calabi-Yau manifolds. We remark that 7', is also numerically flat. In
general, numerically flat vector bundles are local systems (for example see [DPS94]).
Hence T, should be a trivial vector bundle on Z since Z is simply connected and T is
also numerically flat. This is a contradiction to the definition of hyperkahler manifolds
or Calabi-Yau manifolds. Hence the image Y admits a finite étale cover A — Y by an
abelian variety A.

(4) We prove the conclusion (4). By considering the restriction of the standard
exact sequence of the tangent bundle to a general fiber F', we obtain

0 —>Tx/y|F :TF _>TX|F — ¢*Ty|F = NF/X = O%m — 0.

When we consider the projective space bundle f : P(Tx) — X and the non-nef locus
B C P(Tx) of Opry)(1), it can be seen that f(B) is a proper subvariety of X by
pseudo-effectivity of Tx. By considering the commutative diagram

P(T'x|p)——P(Tx)

;oo
Fe—r—— X
we can see that the image of the non-nef locus of Op(zy,)(1) is contained in f(B N F).

For a general fiber F', the image f(BNF) is still a proper subvariety of F'. Hence Tx|p
is pseudo-effective. The surjective bundle morphism

Am+1 (TX |F) — TF

induced by the above exact sequence implies that Tr is pseudo-effective.

We finally show that the MRC fibration ¢ : X — Y is locally trivial if we further
assume X admits a positively curved singular hermitian metric. Under the assumption
of such a metric, the exact sequence of the tangent bundle splits (that is, Tx = T'x;y ®
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¢*Ty) by Theorem 5.1.4. Then, by Ehrensmann’s theorem (see also [H6r07, Lemma
3.19]), we can see that ¢ : X — Y is locally trivial. O

THEOREM 5.2.12. Let X be a compact Kahler manifold with pseudo-effective
tangent bundle and ¢ : X — Y := Alb(X) be its Albanese map. Then the Albanese
map ¢ is a surjective smooth morphism and satisfies all the conclusions in Theorem
5.2.11 except for (3) and (6) by replacing an abelian variety in (2) with a compact
complex torus.

PRrROOF. In the proof of Theorem 5.1.1, the assumption of the projectivity was
used only for the proof of (1) and (6). The other arguments except for (1) and (6) work
even if we replace MRC fibrations with the Albanese map. Hence it is sufficient to prove
that the Albanese map ¢ is a surjective smooth morphism. It is easy to check it. Indeed,
for a basis {nx}7_, of H°(X,Qx), it follows that any non-trivial linear combination of
them is non-vanishing by Lemma 5.2.3. This implies that ¢ is a surjective smooth
morphism (for example see [CP91]). O

In [DPS94], it was proved that X is a Fano manifold when Tx is nef and X is
rationally connected. As an analog of this result, we suggest the following problem. We
remark that the geometry of a general fiber F' in Theorem 5.1.1 can be determined if
the problem can be affirmatively solved.

PRrROBLEM 5.2.13. If a projective manifold X is rationally connected and has the
pseudo-effective tangent bundle, then is the anti-canonical bundle —Kx big?

5.3. Surfaces with pseudo-effective tangent bundle

Toward the classification of surfaces with pseudo-effective tangent bundle, we study
minimal ruled surfaces in subsection 5.3.1 and their blow-ups in subsection 5.3.2, which
provide interesting examples of positively curved vector bundles.

5.3.1. On minimal ruled surfaces. In this subsection, we consider a ruled sur-
face ¢ : X — C over a smooth curve C. When T is pseudo-effective, the base C' should
be either the projective line or an elliptic curve by Theorem 5.1.1. Conversely, it follows
that any minimal ruled surfaces ¢ : X — P! over P! (that is, Hirzebruch surfaces) have
the pseudo-effective tangent bundle from the following proposition. However, they do
not have nef tangent bundle except for the case of X = P! x P!, since they have a curve
with negative self-intersection.

PRrROPOSITION 5.3.1. If X is a projective toric manifold, then Ty is generically
globally generated. In particular, any Hirzebruch surfaces have pseudo-effective tangent
bundle.

PROOF. For a toric manifold X, we have an inclusion (C*)* C X as a Zariski
open dense subset and an action (C*)® ~ X. Consider a family of actions (¢, 1,--- ,1).
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Differentiate it by # at 6 = 0, we obtain a holomorphic vector field on X. Similarly,
we can construct n vector fields which generate T'x|(c+y», and thus Tx is generically
globally generated. O]

Now we consider a ruled surface ¢ : X — C over an elliptic curve C'. Thanks to
Theorem 5.1.1, we can see that the ruling ¢ : X — C should be a smooth morphism
when X has the pseudo-effective tangent bundle. The minimal ruled surface X over
C' can be classified by [Ati55], [Ati57], and [Suw69]: X is isomorphic to S,, Ay,
A_q, or a surface in §y. Here a surface X in Sy means the projective space bundle
P(O¢ @ L) for some L € Pic’(C) and Ay (resp. A_;) is the projective space bundle
associated with a vector bundle of rank 2 that is the non-split extension of O¢ by O¢
(resp. Oc(p)), where p is a point in C'. It can be seen that Ay, A_, and surfaces in Sy
have the nef tangent bundle by [CP91], and thus the remaining problem is the case of
X = 5,. The ruled surface .S,, is the projective space bundle associated with the vector
bundle O¢ @ Oc(np). Note that the tangent bundle of Sy = P! x C'is nef. By the above
observation, it is enough for our purpose to investigate X = S, in the case of n > 1. By
the following proposition, we can see that S,, has the pseudo-effective tangent bundle
(which is not nef), and further that it admits no positively curved singular hermitian
metric.

PROPOSITION 5.3.2. Let ¢ : X — C be a minimal ruled surface over an elliptic
curve C'. Then we have:

(1) The tangent bundle of S, is pseudo-effective, but it does not admit positively
curved singular hermitian metrics when n > 1.
(2) The tangent bundle of Sy, Ag, A_1, and a surface in Sy is nef.

PROOF. All the ruled surfaces with nef tangent bundle are classified in [CP91],
which implies that the conclusion (2) holds and the tangent bundle of S, is not nef for
n > 1.

From now on, let X be the projective space bundle S,, associated with the vector
bundle E,, := O¢ & O¢(np). We first check the latter statement in the conclusion (1).
If X = 5, admits a positively curved singular hermitian metric, the exact sequence

0—=Tx/ic—Tx = ¢"Tc —0
splits by Theorem 5.1.4, and thus we have
(5.3.1) RY(X,Tx) = h*(X, Tx/c) + h°(X, ¢*Tc).
On the other hand, we have h°(X,Tx) = n+ 1 from [Suw69, Theorem 3]. Also we can
easily check that
¢«(Tx/c) = ¢«(—Kx) = Sym*(E,) @ det E) .
This implies that
h(X, Txo) = h*(C, Oc(—np) ® Oc ® Oc(np)) =n + 1.
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This is a contradiction to (5.3.1).

We will prove that Ty is pseudo-effective. For this purpose, it is sufficient to prove
that Sym™ (T ) ® ¢*O(2p) is generically globally generated for any m > 0. Our strategy
is to observe a gluing condition of X = §,, carefully to construct holomorphic sections
that generate Sym™(Tx) ® ¢*O(2p) at general points.

Let v be a local coordinate centered at p and let V' C C' be a sufficiently small open
neighborhood of p. Further, let U be the open set U := C'\ {p} and u be the standard
coordinate of the universal cover C — C. The ruled surface X can be constructed by
gluing (u,¢) € U x P! and (v,n) € V x P! with the following identification:

(5.3.2) ¢=v"n and [u]=p+o,

where ¢ and 7 are the inhomogeneous coordinates of P!.

Let 6 be a meromorphic section of Sym™(Tx) with pole along the fiber ¢~1(p) of p.
Our strategy is as follows: We first look for a sufficient condition for the pole of 8 being
of order at most 2. Then we concretely construct 6 satisfying this condition, which can
be regarded as a holomorphic section of Sym™(Tx) ® ¢*O(2p), and we show that such
sections generate Sym™(Tx) ® ¢*O(2p) on a Zariski open set.

Now @ is a meromorphic section of Sym™(Tx) whose pole appears only along the
fiber ¢~ *(p). Hence, by expanding § on U x P!, we have the following equality

e O\N™m—P/ J\P 1
(5.3.3) §= ;ap(u, 0) <8_C> (%> on U x P!,
Here a, is a meromorphic function on X. The gluing condition (5.3.2) yields that
0 10 0 1 0 0
5.3.4 Z=—2 and —=-nl 4=
( ) o¢ v 0On o u v on + v

Then we can obtain the following expansion of § on V' x P!

(5.3.5) Z{degapvn n(n?pipK}((;’ﬁn)m—e(a%)ﬁonvxm

by an involved, but straightforward computation. Here d,, is the non-zero constant
defined by d,, := (—n)P~* (pf e)' The ruling X — C is locally trivial and sections of
Sym?(Tr) on a fiber F' are polynomials of degree (at most) 2p. This implies that the
meromorphic function a,,_(u, () is a polynomial of degree 2k with respect to ¢, and
thus we can write a,,_; as

2% 2%
(5.3.6) Am—k(V, 1) = Zagzlk(v) (1= Z aglk(v) v™n? forany 0 <k <m

q=0 q=0
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(@)

for some meromorphic function a,,” ,(v) on C' with pole only at p. Here we used (5.3.2)
again.

We will find a sufficient condition for afg)_ . (v) for guaranteeing that the coefficients
in (5.3.5) have the pole of order at most 2. We remark that the section 6 satisfying this
condition determines the holomorphic section of Sym™(Tx) ® ¢*O(2p). By substituting
(5.3.6) for (5.3.5) and rearranging it concerning the powers of 7, a sufficient and nec-
essary condition can be obtained, but this method needs so complicated computation
that we want to avoid to write down it. Here, to improve our prospect, we focus only on
a sufficient condition by considering the restricted situation where ag)_ p = 0 for ¢ # k.
In this situation, it is not so difficult to show that 6 determines the holomorphic section

of Sym™(Tx) ® ¢*O(2p) if aig),q satisfies that

q
1
(5.3.7) E dm,pm,qa%)_p(v)ﬁ has the pole of order < 2 at p for any 0 < ¢ < m.
v
p=0

For an explanation, we prepare the table where we write down them for ¢ = 0,1, 2.

Zg:o dmfp,quaq(g)—p/vq_p ‘

a=4q] |
;q_o} coeff. of (9/0n)°(0/dv)™ H dpmay) |
=] |

dm,mfla’s?g)/v + dmfl,mfla&)_l ‘
coeff. of (0/9n)*(9/Ov)™? dmvm_Qa,@?)/vQ + dm—l,m—2a£r1L)_1/v + dm_27m_2a(2) ‘

m—2

To construct meromorphic functions aﬁﬁ),p on C satisfying (5.3.7), for every n > 2,

we take meromorphic functions P, on the elliptic curve C' such that P, has the pole
only at p and its Laurent expansion at p can be written as follows:

1 g

k>n+1

Note that we can easily find them by using Weierstrass’s elliptic functions and their
differential.
We first put Y = Py/dy, . Then the second line from the top in the table

satisfies (5.3.7) (that is, it has the pole of order at most 2) if we define al’) | by

m—1
aﬁ,llll = —dpmm-1/dm-1m-1P5. By the same way, the third line also satisfies (5.3.7)
(2)

it we define a,,”

o by an appropriate linear combination of P; and P,. By repeating

this process, we can construct meromorphic functions ag),p on C' satisfying (5.3.7)
by a linear combination of {Pg}iié. We denote by 6, the holomorphic section of
Sym™(Tx) ® ¢*O(2p) obtained from the above construction. The section 6, gener-

ates the vector (9/0n)%(9/0v)™ on a Zariski open set, since al) = Py /dum.m 18 nON-ZETO.
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1 = Py/dp_1m—1, so that the first and the second line

in the table have pole of order at most 2. Then, by the same argument as above, we
(p)

m—

Now we put a'? = 0 and o'V
can construct meromorphic functions a,,” , satisfying (5.3.7) by defining them by an ap-
propriate linear combination of { Py Zig (for example ag)_2 = —dm—1,m—2/dm—2m—2P3).
We denote by 6; the obtained holomorphic section of Sym™(Tx) ® ¢*O(2p). By the
construction, the function a'y is zero and ag)_l is non-zero. Hence it follows the sections
0y and 6, generate the vectors (9/9n)°(9/0v)™ and (0/0n)*(0/0v)™ ! on a Zariski open
set.

By repeating this process, we can construct holomorphic sections {6, }7, of Sym™ (T'x )®
»*O(2p) generating Sym™(Tx) ® ¢*O(2p) on a Zariski open set. O

In the rest of this subsection, we suggest the following problem to investigate a gap
between almost nefness and pseudo-effectivity of vector bundles.

PROBLEM 5.3.3. We consider an exact sequence of vector bundles
0—S—F——0.

When S and ) are pseudo-effective, then is E pseudo-effective?

REMARK 5.3.4. When S and @) are nef, its extension E is also nef (see [DPS94,
Proposition 1.15]). Hence we can easily show that F is almost nef if S and @ are almost
nef. In particular, it can be shown that Og(1) is pseudo-effective by [BDPP13], but
we do not know whether or not E itself is pseudo-effective. The difficulty is to show
that the image of the non-nef locus Og(1) to X is properly contained in X. If Problem
5.3.3 can be affirmatively solved, the pseudo-effectivity of the tangent bundle of X = 5,
is easily obtained, by applying it to the standard exact sequence of the tangent bundle.
In fact, we tried some methods in [Suw69], [DPS94|, and [Har70] to solve Problem
5.3.3, but it did not succeed. This problem seems to be subtle since we do not know
whether there is a gap between almost nefness and pseudo-effectivity.

5.3.2. On rational surfaces. By the results in Subsection 5.3.1, it is enough
for the classification of the surfaces to determine when the blow-up of the Hirzebruch
surface has pseudo-effective tangent bundle. However, it seems to be a too hard problem
to classify all the blow-ups completely since X delicately depends on the position and
the number of blow-up points. In this subsection, we study only blow-ups along general
points. The complete classification can not be achieved even in this case, but we
obtain an interesting relation between positivity of tangent bundle and the geometry of
Hirzebruch surfaces. The following proposition gives the requirement for the blow-up
having pseudo-effective tangent bundle.

PROPOSITION 5.3.5. Let ¢ : IF,, — P! be the Hirzebruch surface and let 7 : X —
[F,, be the blow-up along the set 3 of general points on IF,,. Then we have:

(1) If the tangent bundle T'x of X is generically globally generated, then £ < 2.
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(2) If the tangent bundle T'x of X is pseudo-effective, then §¥X < 4.

REMARK 5.3.6. The interesting point here is that the conclusion of 2 < 21in (1)
is optimal, and further the generic global generation and pseudo-effectivity differently
behave for #3. Indeed, it follows that the tangent bundle Ty in the case of 3 < 3 is
pseudo-effective, but not generically globally generated from Proposition 5.3.8.

PRrOOF. (1) Fix a holomorphic vector field £ on X. We shall define a holomor-
phic vector field 6 on P! as follows. Let ¢ be a local holomorphic coordinate on U C P
By pulling back dt, we obtain a holomorphic 1-form 7*¢*dt on U= (ro¢) 1 (U). Then
(¢, m*¢*dt) is a holomorphic function on U. Thus it is constant along each fiber and

defines a holomorphic function on U. Now we define the holomorphic vector field 6 on
P! to be

O = 0 dt) o and {0, dt) = {66 dh).

Since we assumed that T’y is generically globally generated, we can choose £ with 0¢ # 0
on P!

We claim that 6¢ has zeros on the set ¢(X) C P'. To prove the claim, we take a
local coordinate (t,s) on IF,, centered at a point in ¥ such that ¢ is the pull-back of a
local coordinate on P!. If we put v := t/s, then (v, s) is a coordinate on X. Then we
have

(&, m¢*dt) = (&, d(vs)) = (£, sdv + vds).
The last term vanishes at (v,s) = (0,0), and thus (f¢,dt) = 0 at t = 0. This shows the
claim.

In the case of §3 > 3, the vector field 0, has at least three zeros on P'. It contradicts
to the fact of deg Tp1 = 2, thus we have ¥ < 2.

(2) Since Tx is pseudo-effective, we can choose an ample line bundle A and a se-
quence of positively curved singular hermitian metrics h,, on (Sym™ Tx) ® A. Fix a
smooth hermitian metric Ay on A with positive curvature. Then h,, ® h,;* is a (pos-
sibly not positively curved) singular hermitian metric on Sym™ T'yx. Define a singular
hermitian metric g,, on 7*¢*Tp1 by the m-th root of the quotient metric of h,, ® h'
induced by the morphism Sym™ Ty — (7*¢*Tp1)®™. Since (h,, @ h;') @ h4 is positively
curved, the metric g™ ® h, is also positively curved. The curvature current v/—10,,
of g,, satisfies that

1
vV _1®gm Z ——Ww4.
m

Then by taking a subsequence (if necessary), we can assume that /—10,,  weakly
converges to a positive current T € ¢;(7*¢*Tp1). By the argument similar to (1), we
obtain a d-closed positive (1, 1)-current S in ¢;(7pr) such that T' = ¢*n*S. Hence we
have

V=10, = 1¢"S =T € ¢1(¢" " Ip1).
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We take a point p € 3 and put py := ¢(p). We claim that the following bound of
the Lelong number
1
(5.3.8) v(S;po) = 5.
We fix a local coordinate t near py € P'. Let (¢, s) be a coordinate on F,, centered at p.
As before, by putting v = t/s, (v, s) is a coordinate on X. Let p’ € X be a point defined
by (v,s) = (0,0). Let C be a (local) holomorphic curve on X defined by {v = s}. We
will denote C' := 7(C). The defining equation of C is {t/s = s} = {t = s*}. Then we
have

(5.3.9) VCSJm)=:%V®¢Shpp)

Indeed, the function ¢*y is a local potential of ¢*S for a local potential v of S. Note
that s is a local coordinate on C' while ¢t = s? is a local coordinate on P!. We can
calculate each Lelong number by the formula

e ()
v(S,po) = hItILlOnf g 1]’
and thus (52, 5) ()
QI ) — Tirw (st s) oL (sT)
V(¢ S|Cup) —111:911_351f 10g|8| —111:911_351f 10g|3| _2V(Svp0)'

This proves (5.3.9). Since the Lelong number will increase after taking restriction, we
have

v(¢"Sle.p) = v(Tle.p') = v(T,1).
Lelong numbers will also increase after taking a weak limit of currents, thus we obtain

v(T,p") > limsupv(v—10,,,p').

m——+00

The local weight of g, is written as

]' * ok m|2
% log ‘(ﬂ- ¢ (dt>) hil®ha
Since t = vs on X, we can calculate as follows:

(5.3.10) (6" (d8))™2-r = |(vds + sdv)™?

him' ©ha him!@ha®
Since h; ! is negatively curved and h, is smooth, it follows that
2 2
| I toha < 00| " lhsm

for a smooth hermitian metric hg, and some constant Cy > 0 (both depending on m).
Then the right-hand side of (5.3.10) is bounded as

< Co|(vds + sdv)™ ;.
< Col(v, s)*™.
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Thus, the Lelong number of /=16, is bounded as

1 .. . Col(v,s)*™
—16y,,,p) 2 5 liminf "L 7= =1
1/(\/_ g D) 2 2m (lvrg)glo log |(v, s)|

This proves (5.3.8). Since deg Tp1 = 2, there must be at most four points where S has
the Lelong number greater than or equal to 1/2. Therefore 3 < 4. O

We finally prove Proposition 5.3.8 by applying the following lemma. The lemma is
useful when we compare a vector field on a given manifold with its blow-up.

LEMMA 5.3.7. Let m : Y — C? be the blow-up at (a,3) € C? with the ex-
ceptional divisor F, and let (z,y) be the standard coordinate of C2. We consider a
holomorphic section 6 of Sym™ T2 and its expansion

0= nien(2)'(2)"

Then the pull-back (m|y\g)*0 by the isomorphism 7|y\g on Y \ E can be extended to
the holomorphic section of Sym™ Ty if and only if

- 0 tONk/1O\mk
/ TNV (L)
kz:%fk(s—i—a,s +6)<85 36t> (s@t)
is holomorphic with respect to (s,t) € C2.

ProOOF. We first remark that any holomorphic section & of Sym™ Ty determines
the section 8¢ of Sym™ Tr2. Indeed, a given section { induces the section ¢ of Sym™ Tt
on C*\ {(o, )} via the isomorphism 7|y\g, which can be extended on C? since the
blow-up center has codimension two.

We consider the descriptions:

Y = {(z,y,[z: w]) € C* x P'| (z — a)w = (y — B)z},
E={(a,B,[z:w])]|[z: w] € P}.

and put the Zariski open set Y’ := Y N{w # 0}. The following map r gives a coordinate
of Y and 7|ys can be written as follows:

r:C?* — Y’ Ty Y —  C?

If (7 o r)*0 is holomorphic on C?, then (m|y\g)*0 can be extended to the holomorphic
section of Sym™ Ty . Indeed, in this case, the section (7|y\g)*¢ can be extended to
the holomorphic section of Sym™ Ty.. Hence it can also be extended on Y since the
codimension of F N {w = 0} is two.
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By calculation, we obtain
v O  tONk/1O\mk
(ﬂor)Q—ka(s—l—a,st—kﬁ)(&_ga) (EE) '

Hence (7 o r)* is holomorphic on C? if and only if the right hand side is holomorphic
in (s,t) € C%, which completes the proof. O

PROPOSITION 5.3.8. We have:
(1) The blow-up of the Hirzebruch surface F,, along general one or two points has
the generically globally generated tangent bundle.
(2) The blow-up of the Hirzebruch surface F,, along general three points has the
pseudo-effective tangent bundle.

Because the general case is tedious, we first show Proposition 5.3.8 in the simplest
case n = 0.

PROOF OF (1) FOR Fy. In general, for a birational morphism f : Y — Z between
projective manifolds, we have the natural inclusion f.7y C T7. Since the natural
inclusion is of course generically isomorphism, T is generically globally generated if
the tangent bundle Ty is so. Therefore it is sufficient for the proof of (1) to treat only
the blow-up 7 : X — [y along general two points py, po.

We take a Zariski open set C x C = W, C Fy with the local coordinate (z,y). We
may assume that p; = (0,0) and p, = (1,1) by using the action of the automorphism
group of Fy. We define the set of holomorphic vector fields on W)

T:= "t L lea b eC
.—{;akx%jtlzzgly@—y‘ak,le }

We remark that any § € 7 can be extended to a global holomorphic section of Tf,.
From Lemma 5.3.7, for a holomorphic vector field

0 :=a(x)0/0x +b(y)0/0y € T
it follows that 6 can be lifted to the holomorphic section of Ty if and only if
1
—(—a(s+ a)t + b(st + 3)) is holomorphic with respect to (s, t)
s
for (a, 8) = (0,0) and (o, 8) = (1,1). We choose 0; and 6 in T as follows:

0
oy

Then we can easily see that 7%6, and 7%, can be extended to the global holomorphic
sections of T'. For a point ¢ = (z,y) € Wy such that  # 0,1 and y # 0,1, the
vectors 601(q) and 02(q) at ¢ give a basis of Ty, 4. Therefore T is generically globally
generated. 0

0
0, = (2% — x)£ and 6 = (y* — y)
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PROOF OF (2) FOR Fy. We use the same notations as in the proof of (1). Let
7 : X — Ty be a blow-up of Fy along general three points pi, ps, p3. Our goal in
this proof is to show that Sym?*(T) is generically globally generated. Since py, p2, ps
are in general position, we may assume pi, pe,p3 € Wy, p1 = (0,0), po = (1,1), and
ps = (—1,—1) by the action of the automorphism group of Fy.

We define T by

! 92 00 <& 0 \2

ak,bkl,ck < (C} .

It is easy to show that any € € T can be extended to a holomorphic global section of
Sym? T, .
By Lemma 5.3.7, we can see that, for a holomorphic section
0 \2 0 0 0\?2
=) e 2 e () 7
a@){5-) +o@,y) 5 oyt c(y) o) €T

the section # can be lifted to the section of Sym?® 7%, if and only if the followings are
holomorphic with respect to (s,t) € C x C:

é(—2(1(5+a,8t+5)t+b(3+av3t+ﬂ))’

é(a(s%—a,st%—ﬁ)tg —b(s+a,st+ Bt + c(s + a, st + B)),

for (aaﬁ) = (07 0)7 (17 1)7 (_17 _1)
Here we put

0 0 \2
—02(2 I 20,2 e
0 5 o o 0
b=t =) (z) +207 - Vg
0 0
_ N2 7

Then we can easily show that 7*6;, 765, and 7*03 can be extended to global holo-
morphic sections of Sym* T. For a general point ¢ € Wy, it is easy to see that 6;(q),
05(q), and 63(q) give a basis of Sym? Ty, ,. Therefore Sym* T is generically globally
generated. [l

As a preliminary of the proof for [F,,, we prove the following claim. We regard the
Hirzebruch surface F,, for n > 1 as the hypersurface in P! x P?

F,={([X1: Xo],[Yo: Y1 :Y2]) € P! x P*| V1 X} = Yo X[}
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We set U = {Y; # 0 or Yy # 0}. We first observe the automorphism group of F,, so
that general three points move to specific points, which makes our computation not so
hard.

CLAM 5.3.9. General three points py, pe, p3 € U move to ([1:0],[1:1:0]),([1:
,[1:1:1]),([1:—=1],[1:1:(=1)"]) by the action of the automorphism group of F,,.

PRrROOF. Let S, T be variables and P, be a vector subspace of homogeneous
polynomials of degree n in C[S,T]. The linear group GL(2,C) acts on P, as follows:

For any (CCL Z) € GL(2,C) and any >_,_, apS*T"* € P,, we define the action by

n

(CCL Z) ¢ (i akSan_k> = Z ar(aS + 0T (cS + dT)" .

k=0 k=0

This induces the semidirect product G,, := P, x GL(2,C).

For any g = (>_,_, axS*T"F, (Cé Z)) € G,, we define the action of [F,, as follows:

For any ¢ = ([X; : X3, [Yo : Y1 : Y2]) € F,,, we define g(q) by

([aX1+bX5 : eX1+dXa], [YoXT+Y1 > apXFX3" : ¥i(aX)+bXs)" : Yi(eXy+dXy)")),
k=0
if X # 0 and by

n

([aX1 +0Xs 1 Xy +dXo), [VoX3+Y2 Y apXFXP™F 1 Yo(aX+bX5)" 1 Ya(c X +dX5)"))
k=0

if X5 # 0 (see [DI09, Theorem 4.10] or [Blal2, Section 6.1}).
Note that the ruling ¢ : F,, — P! coincides with the first projection. We may assume
that p1, p» and ps are in U and also that the images of them in P! are different from

cach other. By the action of g = (0, <Z Z) ), we obtain

P(g(p1) =[1:0], o(g(p2)) =[1:1], o(g(ps)) =[1: 1]
if we properly choose g. Therefore we may assume
pr=([1:0],[z1:9y1:0]),p2=([1:1],[x2: y2:va]),p3 = ([1: —1], [x3 : y3: (—1)"y3]).

It follows that y, # 0 for k£ = 1,2, 3 since we have g - U C U for any g € G,,.
In the case of n =1 we put
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Then py, pa, ps respectively move to ([1 : 0],[1 : 1 :0]), ([1: 1],[1:1:1]), ([1:
—1],[1: 1: (=1)"]) by the action of (agS + a; T, (g 2 ) € Gy, since we may assume

x1/y1 — T2/2y2 — x3/2ys # 0 since pq, pa, p3 are general points.
In the case of n > 2, we put m = 2|n/2],

T1— Y1 Ty —Y2 T3+ Ys T1—Y1 T2—Y2 X3+ Y3
ag = ’ ap = — + ; m — - - )
Y1 2ys 2ys3 Y1 2ys 2ys3
and ar = 0 for k # 0,1,m. Then py, ps, ps3 respectively move to ([1 : 0],[1 : 1 : 0]),
(120,112 1)), (12 —1],[1 12 (~1)")) by the action of (S axS* T, (1)) €
G,,. O

PROOF OF (1) FOR F,,. We define the Zariski open sets W), = C x C in F,, for
k=1,2,3 as follows:

W — F, ig: Wy — F,
(,y) — (1:z,[1:y:2™y]), (uw,v) — ([1:u],[v:1:u"]),

13 : W3 — IFn
(€m) = ([C:nl[1: ™)),
We take 0 = a(x,y)0/0x + b(z,y)0/dy € H° (W1, Ty, ). The section § extends to a

holomorphic global section of T, if and only if € is holomorphic on W5 and W3, since
the codimension of IF,, \ Ug—123Wj is two. A straightforward computation yields

0 5 0
0 = a(u, 1/1})% — v°b(u, 1/1})% on Wy N Wy,

9 b(1/¢, C”??)) 0
— —_— )| = Wi N Ws.

% ¢ Jog R
Hence it can be seen that the section € can be extended to a global holomorphic section
of Tr, if and only if we define a(z,y) and b(z,y) to be

0 =—C%a(1/¢, )= + (néna(l/c, ¢"n) +

a(x,y) = ap + arx + asxr® and b(x,y) = (by — nasx)y + by (szr)y2

for some ag, ay, as, by € C and for some by (z) € C[z] with deg(b;) < n. We define

0 0
T = {(CLQ + a1xr + &2272)% + (boy — nNasxry + b1y2 + ngyQ)a—y ag, A1, Ay, bo, bl, b2 - C}
Then, by the above observation, it can be seen that any 6 € T extends to a holomorphic
global section of Tf, .

Let 7 : X — F,, be the blow-up of F,, along general two points p;,p;. By Claim
5.3.9, we may assume p1,ps € Wi, p; = (0,1) and p; = (1,1). We choose 6; and 6, in
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T as follows:

9, 0 0
0, =y(y — 1)8—y and 0y = x(z — 1)£ + nxy(y — 1)8_y

By Lemma 5.3.7, the sections #; and 6, can be lifted to holomorphic global sections of
T'x. For any point ¢ = (x,y) € Wj such that  # 0,1 and y # 0,1, (61), and (62), give
a basis of Ty, 4. Therefore Tx is generically globally generated. O

PROOF OF (2) FOR F,,. Let 7 : X — F, be a blow-up of F,, along general three
points py, p2, ps. We show that Sym?(Tx) is generically globally generated. By Claim
5.3.9, we may assume pi, pa, p3 € Wi, p1 = (0,1), po = (1,1), and p3 = (=1, —1).

We take

B 0 \?2 0 0 0\?2 0 5
9-a(x,y)<a—$> +b(x,y)%a—y+c(1‘,y)<a—y> € H'(Wy, Sym* Ty, ).

First we investigate the condition when 6 extends to a global holomorphic section of
Sym2 Ty, . We have

9—a(u,l/v)<€%>2 *b(u, l/v)gag—i—v c(u, 1/1))(8(1) on Wi N Ws and,

fa(1/¢,¢" n)( i>2+ (—2n¢3na(1/g,gnn) C" b(C, m({i;ﬁ
—i—( 2a(1/¢,¢"n) + C Tb(1/¢,¢" 77)+C7nc(1/g“ Ne n)> (%) on Wy N Ws.

In the case of n = 1, the section 6 extends to a global holomorphic section of
Sym? T, if we have

e a(z,y) = ag + a1 + asx? + azz® + ayxt,

o b(z,y) = (bo + b1z + bax? — 2a42%)y + (b3 + byx + bsx® + bex®)y?,

o c(z,y) = (co — (ag + ba)x + agz?)y* + (c1 + cow — bea?)y® + (c3 + caw + c52* +
e + craxt)yt,
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where all coefficients are constant. Here we put

o 0 :x(:l:2—1)<%>2+y<—3$2+y(x3+x2+x—1)+1)%%
+ oy <23: FRE 1) —yla o+ 1)?) <a%)2’

o 0y = a?(—a® + 1)((%)2 4 2%y(x — y)%aﬁy R — 1)<a%>2’

o O3 =a(-z"+ 1)(%>2 + y(3:c2 ty(—a? =22 +1) - 1)%6%

+y?( -2+ yP e 1) +1) (%)2.

Then, by using Lemma 5.3.7 again, the sections 76, 76, and 7*03 extend to holo-
morphic global sections of Sym* T’x. For a general point ¢ € W1, 01(q), 62(q), and 65(q)
give basis of Sym? Tw, 4 Therefore Sym? T is generically globally generated.
In the case of n > 2, the section 6 extends to a holomorphic global section of

Sym2 TIE‘n if

o a(z,y) = ag + a1 + asr? + azz® + ayxt,

o b(z,y) = (bo + b1 + baz? — 2nayx®)y + (bz + byx + bsx? + bex®)y?,

o c(x,y) = (co — (naz + nby)x + nayz?)y? + (c1 + cow + c322)y® + (cs + 5 +

c6r? + crwd + cgat)y?,

where all coefficients are constant. We put

o 0 0 \2
_ 20,2 3( _ 2 R 3 2
o h=m@ -5ty ( 322 + y(—a* + 225 + 22 1)+1>(—8y) ,
0 0 0 \2
_ 20,2 I 2 2 o 2 il
o b=a@t =)y oty (2@ +2) —y(e+1) +1><8y>’
2
o ngx(x3—2x2—x—l—2)<§>
Xz

d 0
+y< —2n2® +62° + 2z(n — 1) — 2+ y(nz(n — 6) + 2°(—n* 4+ 6n — 4) + 2)>%8_y

+ 2 (ne(na + 20 = 6) + 20+ 1+ y( = n2(@ + 12 + y(n + 6nz — 20— 1)) (%)2'

Then 76, 70, and 705 extend to holomorphic global sections of Sym?Ty. For
a general point ¢ € Wy, 01(q), 62(q) and 63(q) give basis of Sym® Ty, ,. Therefore
Sym? Ty is generically globally generated. O



CHAPTER 6

Miscellanies

6.1. Lelong number and non Kahler locus

The Lelong number of a singular hermitian metric on a vector bundle was defined by
Berndtsson [Ber17|. Based on the Berndtsson work, we define a new Lelong number.

Let U be a unit ball in C*, E = U x C", h be a Griffiths semipositive singular
hermitian metric. We take a standard frame ey, - - - , e, of E. Then we have P(E) = U x
P! and Opg) (1) can be endowed with a singular hermitian metric g with semipositive
curvature current induced by h. We have g = e *W) where (2, W) is a quasi-
plurisubharmonic function on U x Pr—1,

DEFINITION 6.1.1. We will denote by v(p,(0,1W)) the Lelong number ¢ at
(0, W). We define the folloing number.

Veup(h,0) := sup v(p, (0,W)), vine(h,0) := inf wv(p, (0,W))
WePpr—1 WePpr—1
We explain more explicitly. Let h* = (hj;) be the dual metric of h on E. We take
the chart {[Wy :---: W,] € Pr1: W, # 0} of P(F). As in Lemma 4.2.2, we define the
isomorphism by
Ux{W,#0} — UxCr!

(W W) = (g, )

and we may regard U x {W, # 0} as U x C™"L. Put n, := % for 1 <1 <r—1and
N, = 1. In this setting, we have

O]P(E)<_1)|U><(CT*1 = {(2,77,5) eUxC ' xC: 77i€j = 77]‘&}
and the local section

BOEP(E)(*l)(Zv (7717 T anr—l)) = (Z’ (771: T ’777“—1)’ (7717 =1, 1))

Then the dual metric g* = €% on Opgy(—1) is written by

- o acige M (D)W
g (zm) = 0n, e, D = > hi(2) 1<ij<r Mg i

nin; = W, 2

1<ij<r

79
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Therefore we have
=log( > hy(z)WiW;) — 2log |W,|
1<4,5<r

and
v, (0,W)) = v(log( Y hj ), (0, ).
1<4,5<r
for any W e {W, # 0}.
In this setting, we explain the relationship with the Lelong number defined by
Berndtsson [Berl7]. For any a = (ay,--- ,a,) € C"\ {0}, we write u, = > ;.. a;€].
The Lelong number of 2* at 0 in the direction u, is defined by o

.. log|ug3.
(11, 0) = lim inf 28 1%eln
i) = B

From log [u,;. = log(32, -, j<, hi;(2)aid;), we have the following corollary.

COROLLARY 6.1.2. In the above setting, the following hold.

(1) = (ta; 0) = v(Pluxiaranys 0) 2 v, (0, [ar = -+ ap])) forany a = (ay, -+ ay) €
C\ {0}.
(2) Yp+(uq,0) = v(p, (0,[ay : -+ : a,])) for general a = (a,--- ,a,) € C"\ {0}.

(3) l/inf(h, O) = inf(ah... Jar)ECT\{0} Yh* (ua, 0)

PRrROOF. The first equality of (1) is clear. By [Dembook, Theorem 7.13] we
have the second inequality of (1) and (2).
We prove (3). By (1), we have viy¢(h, 0) < inf(,, ... o,)ecm\{0} Ta* (Ua, 0). By [Dem12,
Lemma 2.17], we have
Ving (h, 0) = v, {0} x P"71) = v(p, (0, [a1 : -+ 1 @,]))

for general a = (ay,- -, a,) € C"\{0}. Therefore by using (2), the proof is complete. [
We introduce the non-Kéahler locus on vector bundles.

DEFINITION 6.1.3. Let X be a smooth projective n-dimensional variety and E
be a holomorphic vector bundle of rank r on X.

(1) For any k € Noy and any ample line buundle, we set
7-[,': 4 = {h: his a Griffiths semipositive singular hermitian metric of Sym*(E) ® A™H
(2) If E is V-big, the non-Kéhler locus L, x(F) is defined by
E) = ﬂ ﬂ {z € X: vyp(h,z) > 0},
kAnerf

where the cap is taken over all k£ € N.y and all ample line bundle A. By
Theorem 4.1.2, this locus is well-defined.
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This is a higher rank analogy of Boucksom’s non-Kéhler locus [Bou04|. In this
section, we prove the following theorem.

THEOREM 6.1.4. If F is big, L,k (E) = B, (F) holds .

Therefore, we give a characterization of the augumented base locus by using singular
hermitian metrics on vector bundles and the Lelong number.

Before the proof, we recall a singular hermitian metric induced by holomorphic
sections, proposed by Hosono [Hos17, Chapter 4]. We assume that E is a globally
generated at general point. Let sy,...,sy € HY(X, F) be holomorphic sections. We
take a local coordinate U and take a local holomorphic frame eq, ..., e, of E on U. Write
S = D 1< j<r Jaj€j, where fo; are holomorphic functions on U. A singular hermitian
metric hg induced by sq,..., sy is given by

(B)jk =D fjfak-
1<a<N

By [Hos17, Example 3.6 and Proposition 4.1], hy is Griffiths semipositive.
PROPOSITION 6.1.5. In this setting, {z € X : vgp(hs, ) > 0} C Bs(E) holds.

ProoF. The N x r matrix A is defined by A,; = f,; as in Lemma 4.2.2. By
the standard linear algebra, we have Bs(E)NU = {z € U: rank A(x) <r}.
Let g = e % be a singular hermitian metric with semipositive curvature current on
Op(p)(1) induced by h,. By the above argument, we have

vip, (W) =vlog( Y faiWifaxWi), (0,W)).

AL LEE Sl

If Vgup(hs, ) > 0, there exists a € P! such that v(y, (z,a)) > 0. We obtain
Z foj(@)a; far(x)ar =0,

and consequently we have >, ., faj(7)a; = 0 for any 1 < o < N. Hence we have
rank A(x) < r, therefore x € Bs(FE) holds. O

Now, we prove the Theorem 6.1.4.

PRrROOF. First, we show that L,x(F) C B, (F). We take a sufficiently ample
line bundle A such that By (E) = () cy., B(Sym?(E) ® A™') by [BKK+15, Remark
2.7). Tt is enough to show that L, (F) C B(Sym?(E)® A~!) for any q € N.g such that
B(Sym/(E) ® A™') # X. We fix ¢ € N5y and take m € Ny such that B(Sym?(F) ®
A1) = Bs(Sym"™(E)® A™™). From Bs(Sym?™(E)® A™™) # X, Sym?"(E)®@ A~™ can
be endow with a Griffiths semipositive singular hermitian metric A induced by global
sections and {z € X: vgy(h, ) > 0} C Bs(Sym?™(E) ® A™™) holds. By h € H_ 4m
and the definition of L,k (F), the proof is complete.
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For inverse inclusion, we take a point « ¢ L, x(F). There exist k € N5, an ample
line bundle H, and a Griffiths semipositive singular hermitian metric  on Sym*(E) ®
H~1 such that vep(h, z) = 0. We will show that x ¢ B, (E), more precisely, there exists
q € Ny such that Sym?(F) @ A~! is globally generated at x. This proof is similar to
the proof of Theorem 4.3.1.

We take a local coordinate (U; 2y, - ,2,) near z. Let ¢ = n(n + 1)log|z — z|?,
where 7 is a cut-off function such that n =1 near z. and we put ¢ := “57"¢. Let hy
be a positive smooth hermitian metric on H. We take a positive integer m such that

(1) my/=104,, i ++/—109n > 0 holds in the sense of current, and
(2) Opp)(r) @ T (A7 @ Ki' ® det EY ® H™) is ample.

We will denote by g the singular hermitian metric with semipositive curvature cur-
rent on Opgy (k) ® H' induced by h. From vy, (h,z) = 0, there exists a open set
x € V CC Usuch that g*™ is integrable on 7~1(V') by Skoda’s Theorem and the defini-
tion of vgyp.

We put L := Op(m)(2km) @ m* H " @ Oppy(r) @ m* (A® K' @ det EY ® H™). Then
we have

Opr)(2km) @ A™' = Kp(py @ Opp)(2km) @ 7 H " ®@ Opp)(r) @ 7 (A® Ky' @ det EY @ H™)
= Kpr) ® L

By the same argument of Theorem 4.3.1, L has a singular hermitian metric I with
semipositive curvature current such that
V—10;5 + (1 + g)\/—1(95¢ > 0 in the sense of current
: n
for any a € [0, 1].
In this setting, the same proof as in Step 3 of Theorem 4.3.1 (C) = (A) works. The

details left to the reader.
O

Unlike the non-Kahler locus, the non-nef locus is difficult. For any k € Ny, and
any ample line bundle A, we set

Hj 4 = {h: his a Griffiths semipositive singular hermitian metric of SHE)® A}.

and set H, = UsH, ,. For any point x, we write

ar(r) == inf (Vp(h,)).
heH

EHy,

Since we have h! € Hy, for any h € H, , we obtain lag(x) > ag(z). Therefore we

define
€77

Umet(E, ) := H}if %
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which is a higher rank analogy of the minimal multiplicities v(, z) at x for any pseudo-
effective cohomology class v in [Bou04, Definition 3.1].
In this setting, we can easily to show that

{r € X: vpu(E,z) >0} C U{m € X:ap(zr) >0} CB_(F)

by using the method in Theorem 6.1.4. However the inverse inclusion is unknown. It
is difficult since there is no canonical way to give a singular hermitian metric to £ by
using a metric hy on S*(E).

Moreover it is unknown that there exists a minimal singular hermitian metric on
a pseudo-effective vector bundle, which is a higher rank analogy of a minimal singu-
lar hermitian metric defined by Demailly, Peternell and Schneider [DPS94] (see also
[Dem12, Chapter 6]). It is also an interesting question.

6.2. An example of a rationally connected manifold.

CONJECTURE 6.2.1. [NZ18, Conjecture 1.6] Any compact Kéhler manifold with
negative scalar curvature cannot be rationally connected.

We give a partial answer of this conjecture.

THEOREM 6.2.2. Let X be a blow up P? at general 14 points. Then X has a
hermitian metric with negative scalar curvature and X is rationally connected.

We don’t know whether X has a Kéhler metric with negative scalar curvature.
PrOOF. We use the following theorem.

THEOREM 6.2.3. [Yan17, Theorem 1.3] Let Y be a compact complex manifold.
The following are equivalent.
(1) K, is not pseudo-effective.
(2) Y has a hermitian metric with negative scalar curvature.

It is enough to give a example such that K; is not pseudo-effective and X is ra-
tionally connected. Since rationally conectedness is birational property, X is rationally
connected. We show that K)_(l is not pseudo-effective.

We denote by H = Op2(1) and by 7: X — P? the blow up morphism. Let {F;}2,
be exceptional divisors. We have

14 14
Ky =7"(Kp)+ Y E=n"(-3H)+ Y _E
i=1 i=1

By [Ku94],

14
A:=7"(4H) — ZEz
i=1
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is ample divisor on X.

To obtain a contradiction, suppose that K)_(1 is pseudo-effective. Then for any
m € Nsg there exists a n € Ny such that n(—mKx + A) has a section. Therefore
for any m € Ny, we have A(—mKx + A) > 0. We point out (—mKx + A) =
(3m +4)7*(H) — (m + 1) .12, B

However, we have
A(—mKx + A) = (r*(4H) — Z E)((3m +4)7*(H) — (m+1) Z E;)

=12m+ 16— 14(m+1) = —2m + 2,

this is a contradiction. Therefore, K)}l is not pseudo-effective. 0

6.3. Higher Fujita’s decomposition

DEFINITION 6.3.1. [KM98] Let X be a smooth projective manifold.
(1) A I-cycle is a formal linear combination of irreducible reduced and proper

curves C' = a,;C;.

(2) Two 1l-cycle C,C" is numerically equivalent if D.C = D.C" for any Cartier
divisor D.

(3) Ni(X)g is a R-vector space of 1-cycles with real coefficients modulo numerical
equivalence.

DEFINITION 6.3.2. [Lazi| A class a € Ny(X)r is movable if D.aw > 0 for any
effective Cartier divisor D. The set of movable classes forms a closed convex cone
Mov(X) C Ni(X)g, called the movable cone.

C'is a strongly movable curve if C' = m,(A;N---NA,_1) for some proper modification
7 : X — Y and some ample divisors A; - - - A,_;. By [BDPP13|, Mov(X) is the closure
of the cone spanned by strongly movable curves.

Let X be a smooth projective manifold and £ # 0 be a torsion-free coherent sheaf
on X. For any a € Mov(X), the slope of £ with respect to « is defined by

_al).a
Hal&) 1= rk&

€ is a-semistable if p(F) < pa(€) for any nonzero coherent subsheaf F C €. € is
a-stable if po(F) < pa(€) for any nonzero coherent subsheaf F C £ and F # €.

wrer(€) is define by supremum of p,(F) for nonzero coherent subsheaf F C &.
pumin(£) is define by infimum of p,(Q) for nonzero torsion-free coherent quotient sheaf
& — Q. By [Lazi|, there exists a subsheaf F,,,,, C £ and such that p"**(E) = pio(Fmaz)
and there exists a torsion-free coherent quotient sheaf & — Q,,;, such that p™"(€) =
Lo (Qmin). Fmax is called mazimal a-destabilizing subsheaf of &.

In this section, we prove the following theorems.
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THEOREM 6.3.3. Let X be a smooth projective manifold, £ be a reflexive coher-
ent sheaf and o = A"~! for some ample line bundles A. If £ has a Griffiths semipositive
singular hermitian metric, then there exists a decompostision £ = Q & G such that

e O is a hermitian flat vector bundle.

e G is a reflexive coherent sheaf and ™" (G) > 0.

PRrROOF. We point out p™"(£) > 0 since & is pseudo-effective.
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The proof is by induction. If rk€ = 1 and p™"(€) = 0, then uy(E) = 0. Hence

c1(E)A; -+ A,y = 0, we have ¢;(€) = 0. Since & is pseudo-effective, £ is hermitian
flat.

If " (E) = 0, then we have a torsion-free coherent quotient sheaf & — Q,;, such

that ™" (&) = p1a(Qmin) = 0. Quin is a reflexive coherent sheaf such that ¢1(Q,nin) = 0

and Q,,;, has a Griffiths semipositive singular hermitian metric. By Theorem 5.2.5,
Qin is a hermitian flat vector bundle. We put r' := rkQ,.;, < rk€. By taking duals,
we have

09V, L& 5K =0,
where I is a cokernel of ¢ : QY. — €Y. We have A"¢ € Hom(det(QY,, ), AN"EY) =
HO(X, (det(QY.,,) ® A"E)Y). Since det(QY,;,) ® A" E is pseudo-effective, A™ ¢ is non
vanishing on Xg¢. Therefore ¢|x, : Qinlx. — €7|x. is an injective bundle morphism

and we have K|y, is a vector bundle. By Theorem 5.1.3 we have
€V xe = Quinlxe ® Klx,
From codim(X¢) > 2, we have
E = Quin®KY,
by taking duals. Since rkKY < r, KV is a reflexive coherent sheaf and IV has a Griffiths
semipositive singular hermitian metric, by induction hypothesis, we have

K'=9 ag,
where Q' is a hermitian flat vector bundle and ™" (G) > 0. Therefore we put Q :=
Qmin ® Q', which complete the proof. 0

PROPOSITION 6.3.4. Let X be a smooth projective manifold, G be a reflexive
coherent sheaf and o = A"~! for some ample line bundles A. If p™"(G) > 0, then G is
generically ample, i.e. G|¢ is ample on C for a general curve C' = Dy N ---N D, for

general D; € /m;A| and m; >> 0.

ProoF. This is a well known to expert. We prove for the readers. We use the
following Mehta-Ramanathan’s theorem.

THEOREM 6.3.5. [MR82|[Miy87] Let X be a smooth projective manifold, £
be a reflexive coherent sheaf and o = A"~! for some ample line bundles A For large
integer m and general Y € |mA|, the maximal ay-destabilizing subsheaf of €]y extends
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to a saturated subsheaf of £, where ay := (A|y)""2. In particular £ is a-semistable iff
Ely is ay-semistable.

For any 1 <i <n—1, we define C; := D;N---ND;. We have C,,_; = C' and we
put Co = X. For any 0 < i < n — 1, we put ag, := (A|¢,)" " and F; is defined by
a maximal ag,-destabilizing subsheaf of GY|c,. By Mehta-Ramanathan’s theorem, we
have fiac, (Fi) < foc, | (Fi1) for any 1 <i <n — 1. Hence we have

po (G |e) = pac, , (Fu-1) < Hag, (Fo) = 11" (G") < 0.
Therefore we have u™"(G|c) > 0, G|c is ample. O

«

In particular, we obtain a higher Fujita’s decomposition of a direct image sheaf of
relative pluricanonical line bundle.

THEOREM 6.3.6. (cf. [Fuj77][CK19]) Let X be a compact Kéhler manifold, Y
be a smooth projective manifold and f : X — Y be a proper surjective morphism with
connected fibres. For any m € Nyy. we have a higher Fujita’s decomposition

(fe(mEKxy))" 2 Q G,
where () is a hermitian flat vector bundle and G is a generically ample reflexive coherent
sheaf.
In particular if Y is a curve, for any m € Nyy. we have a Fujita’s decomposition
fi(mKx)y) = Q& G,

where () is a hermitian flat vector bundle and G is an ample vector bundle.
ProoOF. By [Wangl9, Theorem B|(or [PT18] ,[HPS18] in case when f is

projective), f.(mKx,y) has a Griffiths semipositive singular hermitian metric, which
completes the proof by Theorem 6.3.3 and Proposition 6.3.4 O
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