
REMARKS ON MIYAOKA’S INEQUALITY
FOR COMPACT KÄHLER MANIFOLDS

MASATAKA IWAI

1. Miyaoka’s inequality for compact Käler manifolds

In this note, we will prove Miyaoka’s inequality for compact Kähler manifolds. A
precise statement is as follows:

Theorem 1.1. Let X be a compact Kähler manifold and ω be a Kähler form. If
KX is nef and ν(KX) ≥ 2, then there exists ε0 depending on (X,ω) such that

(1.1)
(
3c2(Ω

1
X)− c1(Ω

1
X)

2
)
(KX + εω)n−2 ≥ 0.

holds for any 0 < ε < ε0.
Moreover, if (

3c2(Ω
1
X)− c1(Ω

1
X)

2
)
(KX + εω)n−2 = 0

holds for some 0 < ε < ε0, then there exists a finite étale cover A× S → X, where
A is a torus and S is a smooth projective surface whose universal cover is an open
ball.

In [Miy87], Miyaoka proved this type inequality for normal projective variety
smooth in codimension 2. So, this type inequality (1.1) is called ”Miyaoka’s inequal-
ity.” There are many studies related to Miyaoka’s inequality, for example, [Lan02],
[RT23] and [RT22]. Anyway, for any KLT (Kawamata log terminal) projective va-
riety, Miyaoka’s Inequality holds by [IMM24]. But in Kähler case, we don’t know
whether Miyaoka’s inequalities hold, even if compact Kähler manifold case. This is
because, in Miyaoka’s proof, he use some cutting argument by hypersurfaces. His
argument can not be applied for compact Kähler manifold.

In [IMM24], we showMiyaoka’s inequality by using Higgs bundle. So, by using this
argument, we can prove Miyaoka’s inequality like (1.1), because the argument about
Higgs bundle can be applied for compact Kähler manifolds thanks to Simpson’s
results in [Sim88].

Hence the proof of Theorem 1.1 is not new. Indeed, we can prove this
inequality only by using the argument of [Cao13], [IM22] and [IMM24]. However, it
is better to prove it, so the author decided to write the proof here.

Proof of Theorem 1.1.

Step 1: Set up

Set ν := ν(c1(KX)) and αε := c1(KX) + ε{ω} for any ε > 0. By [Cao13, Proposi-
tion 2.3], if ε > 0 is small enough, the αn−1

ε -Harder Narasimhan filtration

0 =: E0 ⊂ E1 ⊂ · · · ⊂ El := Ω1
X
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is independent of ε. Set Gi := Ei/Ei−1 and ri := rk(Gi). Since Ω
1
X is αn−1

ε -generically
nef for any positive ε small enough by [Cao13], we have µαε(Gi) ≥ 0. The sheaf Gi

is an αn−1
ε -semistable sheaf. By [IM22, Claim 6.2], we obtain

c1(Gi)c1(KX)
ν{ω}n−1−ν = 0.

The Bogomolov-Gieseker inequality shows that c2(Ω
1
X)α

n−2
ε > 0 holds if l = 1.

Hence, we may assume that l ≥ 2. Set ai := c1(Gi)c1(KX)
ν−1{ω}n−ν . Then, we have

µαε(Gi) =

(
n− 1

ν − 1

)
ai
ri
εn−ν +O(εn−ν+1).

From µαε(G1) > · · · > µαε(Gl) ≥ 0, we obtain a1/r1 ≥ a2/r2 ≥ · · · ≥ al/rl ≥ 0 for
sufficiently small ε > 0.

By [IM22, Section 6], we obtain

c1(KX)
2αn−2

ε =
∑
1≤k≤l

c1(Gk)c1(KX)α
n−2
ε

=

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)
εn−ν +O(εn−ν+1),

(c1(Gi)c1(E)αn−2
ε )2

c1(E)2αn−2
ε

=

((
n− 2

ν − 2

)
aiε

n−ν +O(εn−ν+1)

)2

·

(
ε−n+ν(

n−2
ν−2

) (∑
1≤k≤l ak

) +O(ε−n+ν+1)

)

=

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1

a2i ε
−n+ν +O(εn−ν+1).

(1.2)

Step 2: Estimate of c2(Gi)α
n−2
ε .

Since Gi is α
n−1
ε -semistable for any 2 ≤ i ≤ l, the Bogomolov-Gieseker inequality

yields

(1.3)

(
c2(Gi)−

ri − 1

2ri
c1(Gi)

2

)
αn−2
ε ≥ 0

To get a desired inequality, we need to estimate c2(G1)α
n−2
ε more detail. We define

the Higgs sheaf (H, θ) by H := G1 ⊕OX and

θ : H = G1 ⊕OX → H⊗ Ω1
X = (G1 ⊕OX)⊗ Ω1

X

(a, b) 7→ (0, a).

Since G1 ⊂ Ω1
X is αn−1

ε -semistable with µαn−1
ε

(G1) > 0, the Higgs sheaf (H, θ) is αn−1
ε -

stable by the same argument in [IMM24, Proposition 2.8]. Hence the Bogomolov-
Gieseker inequality in [Sim88] yields

(1.4)

(
c2(G1)−

r1
2(r1 + 1)

c1(G1)
2

)
αn−2
ε ≥ 0.

Step 3: Calculation of (6c2(Ω
1
X)− 2c1(Ω

1
X)

2)αn−2
ε .
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By the same calculation as in [IM22, Section 6], we obtain

(
6c2(Ω

1
X)− 2c1(Ω

1
X)

2
)
αn−2
ε

=

(
c1(KX)

2 +
∑
2≤i≤l

(
6c2(Gi)− 3c1(Gi)

2
)
+ 6c2(G1)− 3c1(G1)

2

)
αn−2
ε

≥
(1.3)

(
c1(KX)

2 +
∑
2≤i≤l

(
3(ri − 1)

ri
c2(Gi)− 3c1(Gi)

2

)
+ 6c2(G1)− 3c1(G1)

2

)
αn−2
ε

=

(
c1(KX)

2 −
∑
2≤i≤l

(
3

ri
c1(Gi)

2

)
+ 6c2(G1)− 3c1(G1)

2

)
αn−2
ε

≥
(by Hodge index Theorem)

c1(KX)
2αn−2

ε − 3
∑
2≤i≤l

(c1(Gi)c1(KX)α
n−2
ε )2

ric1(KX)2αn−2
ε

+
(
6c2(G1)− 3c1(G1)

2
)
αn−2
ε

(1.5)

If r1 = 1, the equation (1.4) implies c1(G1)
2 ≤ 0. Thus, as in the estimates of

[IM22, p.25], we obtain(
6c2(Ω

1
X)− 2c1(Ω

1
X)

2
)
αn−2
ε

≥ c1(KX)
2αn−2

ε − 3
∑
2≤i≤l

(c1(Gi)c1(KX)α
n−2
ε )2

ric1(KX)2αn−2
ε

=
(1.2)

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1(∑
1≤i≤l

ai
∑
1≤j≤l

aj − 3
∑
2≤i≤l

a2i
ri

)
εn−ν +O(εn−ν+1)

≥
(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1(∑
1≤i≤l

ai
∑
1≤j≤l

aj − 3a1
∑
2≤i≤l

ai

)
εn−ν +O(εn−ν+1)

(
by

a1
r1

≥ ai
ri

)

=

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1
(a1 − 1

2

∑
2≤i≤l

ai

)2

+
3

4

(∑
2≤i≤l

ai

)2
 εn−ν +O(εn−ν+1).

Since
∑

1≤i≤l ai = 1, (
a1 −

1

2

∑
2≤i≤l

ai

)2

+
3

4

(∑
2≤i≤l

ai

)2

is always positive, hence (3c2(Ω
1
X)− c1(Ω

1
X)

2)αn−2
ε is also positive for any 0 < ε � 1.

From now on, we may assume r1 ≥ 2.

Claim 1.2. The following estimate holds:(
6c2(Ω

1
X)− 2c1(Ω

1
X)

2
)
αn−2
ε

≥
(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1
(1− 3

r1 + 1

)
a21 +

∑
2≤i≤l

ai

(
2− 3

r1

)
a1 +

(∑
2≤i≤l

ai

)2
 εn−ν +O(εn−ν+1)
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In particular, if r1 > 2 or
∑

2≤i≤l ai > 0, then (3c2(X)− c1(X)2)αn−2
ε is positive

for any 0 < ε � 1.

Proof of Claim 1.2. As in the estimates of [IM22, p. 25], we obtain

(
6c2(Ω

1
X)− 2c1(Ω

1
X)

2
)
αn−2
ε

≥
(1.4)

c1(KX)
2αn−2

ε − 3
∑
2≤i≤l

(c1(Gi)c1(KX)α
n−2
ε )2

ric1(KX)2αn−2
ε

+

(
3r1

r1 + 1
c1(G1)

2 − 3c1(G1)
2

)
αn−2
ε

≥
(by Hodge index Theorem)

c1(KX)
2αn−2

ε − 3
∑
2≤i≤l

(c1(Gi)c1(KX)α
n−2
ε )2

ric1(KX)2αn−2
ε

− 3
(c1(G1)c1(KX)α

n−2
ε )2

(r1 + 1)c1(KX)2αn−2
ε

=
(1.2)

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1(∑
1≤i≤l

ai
∑
1≤j≤l

aj − 3
∑
2≤i≤l

a2i
ri

− 3
a21

r1 + 1

)
εn−ν +O(εn−ν+1)

≥
by a1

r1
≥ ai

ri

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1(∑
1≤i≤l

ai
∑
1≤j≤l

aj − 3
a1
r1

∑
2≤i≤l

ai − 3
a21

r1 + 1

)
εn−ν +O(εn−ν+1)

=

(
n− 2

ν − 2

)(∑
1≤k≤l

ak

)−1
(1− 3

r1 + 1

)
a21 +

∑
2≤i≤l

ai

(
2− 3

r1

)
a1 +

(∑
2≤i≤l

ai

)2
 εn−ν

+ O(εn−ν+1).

Hence, if r1 > 2 or
∑

2≤i≤l ai > 0, then

(
1− 3

r1 + 1

)
a21 +

∑
2≤i≤l

ai

(
2− 3

r1

)
a1 +

(∑
2≤i≤l

ai

)2

> 0,

in particular, (3c2(Ω
1
X)− c1(Ω

1
X)

2)αn−2
ε is positive for any 0 < ε � 1. □

From now on, we assume that r1 = 2 and
∑

2≤i≤l ai = 0. Let us consider the case
where c1(G2)c1(KX)

ν−t{ω}n−1−ν+t 6= 0 holds for some t ∈ {2, . . . , ν − 1}. Then, we
take the minimal number s ∈ {2, . . . , ν−1} such that c1(G2)c1(KX)

ν−s{ω}n−1−ν+s 6=
0, and set bi := c1(Gi)c1(KX)

ν−s{ω}n−1−ν+s for any i = 2, . . . , l. Then, since we have

c1(Gi)α
n−1
ε =

(
n− 1

ν − s

)
biε

n−ν+s−1 +O(εn−ν+s) ≥ 0,
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we obtain bi ≥ 0. Thus we conclude that
∑

2≤i≤l bi > 0. Moreover, by the Hodge
index Theorem, we can estimate as follows:

c1(Gi)c1(KX)α
n−2
ε =

(
n− 2

ν − s− 1

)
biε

n−ν+s−1 +O(εn−ν+s)

c1(Gi)
2αn−2

ε ≤ (c1(Gi)c1(KX)α
n−2
ε )

2

c1(KX)2αn−2
ε

=

(
n−2

ν−s−1

)2
b2i(

n−2
ν−2

)
a1

εn−ν+2s−2 +O(εn−ν+2s−1)(∑
2≤i≤l

c1(Gi)

)2

αn−2
ε ≤

(∑
2≤i≤l c1(Gi)c1(KX)α

n−2
ε

)2
c1(KX)2αn−2

ε

=

(
n−1

ν−s−1

)2
(
∑

2≤i≤l bi)
2(

n−2
ν−2

)
a1

εn−ν+2s−2 +O(εn−ν+2s−1).

(1.6)

Hence, by the same argument as in [IM22, p.26], we can get(
6c2(Ω

1
X)− 2c1(Ω

1
X)

2
)
αn−2
ε

≥
(1.5)

(
c1(KX)

2 − 3
∑
2≤i≤l

c1(Gi)
2

ri
+ 6c2(G1)− 3c1(G1)

2

)
αn−2
ε

≥
(1.4)

(
c1(KX)

2 − 3
∑
2≤i≤l

c1(Gi)
2

ri
− c1(G1)

2

)
αn−2
ε

=

2
∑
2≤i≤l

c1(Gi)c1(KX)−

(∑
2≤i≤l

c1(Gi)

)2

−
∑
2≤i≤l

3

ri
c1(Gi)

2

αn−2
ε

≥
(1.6)

2

(
n− 2

ν − s− 1

)(∑
2≤i≤l

bi

)
εn−ν+s−1 +O(εn−ν+s).

(1.7)

From s − 1 > 0 and
∑

2≤i≤l bi > 0 we obtain (3c2(Ω
1
X)− c1(Ω

1
X)

2)αn−2
ε > 0 for

sufficiently small ε > 0.
Hence, from now on, we assume that c1(Gi)c1(KX)

t{ω}n−1−t = 0 for any t =
1, . . . , n− 1 and i = 2, . . . , l. Then we have

(1.8) c1(Gi)c1(KX)α
n−2
ε = c1(Gi)c1(KX)(c1(KX) + ε{ω})n−2 = 0.

From c1(KX)
2αn−2

ε > 0, we obtain

(1.9) c1(Gi)
2αn−2

ε ≤ 0 and

(∑
2≤i≤l

c1(Gi)

)2

αn−2
ε ≤ 0
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by the Hodge index Theorem in [IM22, Lemma 6.1]. Thus, it holds that(
6c2(Ω

1
X)− 2c1(Ω

1
X)

2
)
αn−2
ε

≥
(1.7)

2
∑
2≤i≤l

c1(Gi)c1(KX)−

(∑
2≤i≤l

c1(Gi)

)2

−
∑
2≤i≤l

3

ri
c1(Gi)

2

αn−2
ε

≥
(1.8) and (1.9)

0.

To summarize all the discussions in Step 3, we can say that (3c2(Ω
1
X)− c1(Ω

1
X)

2)αn−2
ε

is nonnegative for any 0 < ε � 1.

Step 4: The structure of X if equality holds in (1.1)

We consider the case of (6c2(Ω
1
X)− 2c1(Ω

1
X)

2)αn−2
ε = 0 for some small 0 < ε � 1.

By the argument in Step 3, we obtain

rk E1 = 2 and c1(Gi)
2αn−2

ε = 0

for any 2 ≤ i ≤ l. Hence the Hodge index Theorem in [IM22, Lemma 6.1] implies
c1(Gi) ≡ 0, and finally we can get c1(G1) ≡ c1(KX) and l = 2.

Set Q := Ω1
X/G1. Then we have

(1.10)
(
3c2(Ω

1
X)− c1(Ω

1
X)

2
)
αn−2
ε =

(
3c2(G1)− c1(G1)

2
)
αn−2
ε + 3c2(Q)αn−2

ε .

Since the two terms in RHS of (1.10) is nonnegative, hence we obtain(
3c2(G1)− c1(G1)

2
)
αn−2
ε = 3c2(Q)αn−2

ε = 0.

Thus Q is a rank n−2 flat locally free sheaf. Hence, Q∨ ⊂ TX is a regular codimen-
sion 2 foliation with hermitian flat structure. Thus, by [PT13], there exists a finite
étale cover A × S → X, where A is a torus and S is a smooth projective surface
whose universal cover is an open ball (see also [IMM24, Theorem 4.12]).

□

By putting together [IM22] and Theorem 1.1, we obtain the following theorem.

Theorem 1.3. Let X be a compact Kähler manifold and ω be a Kähler form. If
KX is nef, then there exists ε0 depending on (X,ω) such that

(1.11)
(
3c2(Ω

1
X)− c1(Ω

1
X)

2
)
(KX + εω)n−2 ≥ 0

holds for any 0 < ε < ε0.
Moreover, if (

3c2(Ω
1
X)− c1(Ω

1
X)

2
)
(KX + εω)n−2 = 0

holds for some 0 < ε < ε0, then, the canonical divisor KX is semi-ample and
ν(KX) = κ(KX) is either 0, 1, or 2. Moreover, up to finite étale cover of X, one of
the following holds depending on the Kodaira dimension:

(i) In the case where ν(KX) = κ(KX) = 0, the variety X is isomorphic to a
complex torus.

(ii) In the case where ν(KX) = κ(KX) = 1, the variety X admits a smooth torus
fibration X → C over a curve C of genus ≥ 2.
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(iii) In the case where ν(KX) = κ(KX) = 2, the variety X is isomorphic to the
product A×S of a complex torus A and a smooth projective surface S whose
universal cover is an open ball in C2.

Acknowledgments. The author would like to thank the organizers of ”SCV, CR
geometry and Dynamics” at RIMS in Kyoto for providing the opportunity to write
this note.1
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