
regular polytope VC 15/1 M-[Cell 41, N29ulm. TRE, All to regular-(\$10 564211 £3 or 45,05702) 271711-223 $M=2 \implies \text{Sp3.}$ $N=-2 \implies \text{Sp3.}$ -IPA+1120036 - 「別な、でけったんする正仏をその

=) {P, 2, r} st P, w & ran N > 5 Flinks regular & Thin Ph-il, regular

M21. Pu? N=3 2" [P. 9].

= 26711 - Chiterun Thin In-13 hetn your Polytye $=) \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{1} \\ C_{2} \\ C_{3} \end{array} \right| \left| \begin{array}{c} C_{1} \\ C_{1} \\ C_{2} \\ C_{3} \\ C_{3} \\ C_{3} \\ C_{3} \\ C_{4} \\ C_{1} \\ C_{2} \\ C_{3} \\ C_{3} \\ C_{3} \\ C_{4} \\ C_{4} \\ C_{5} \\ C_{5}$ $N=4 \iff 5/N + S/N + S/N$

Thm (=>L711— [850?)

TP1, P2/1. Pn-13 Ndin ngula polytye (NZ3) N=4 $\frac{1333}{8}$ $\frac{1333}{16}$ $\frac{1333}{120}$ $\frac{1333}{120}$ $\frac{13333}{120}$ $\chi \gtrsim 5$ $\{3,...,3\}, \{1,...,3,4\}, \{9,3,--3\}$

まさいとろんちいしまる

 $\sqrt{N-3}$

•		of Loop	74	707 2
	3,3	4	6	4
	4,3	6		8
	3,4	Ŝ	7	6
	5,3	[2	2	20
	3,5	ŹD	30	(}
_	3			

Euler Familia (SUA) - (NA) + (NA) = 2

	制体	かん	1h	26
333	(5)	[D	10	(5)
433	8	29	32	<i>[6</i>
334	[6	32	24	8
243	24	96	96	24
533	20	720	[20	600
335	600	[200	n20	120
·				

Eukerformula 13- Jah + Mh - Zh = 0

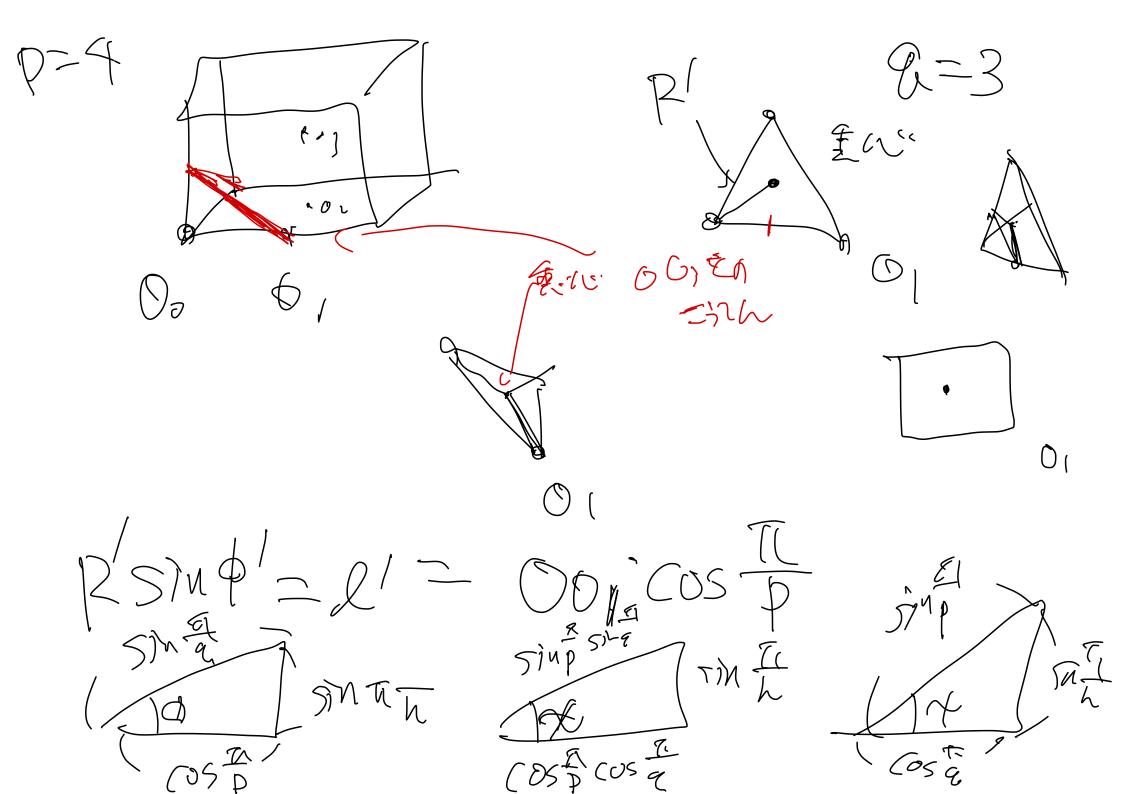
(h-l) cell - (h-z) cell + (h-z) cell - + (-1) ocell $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

- () bhb" ##13 2 f (1"---TP. G3 611 regular-on 1-57 A/11/18"1 会 会

N=3 NY=1 Euler formula 6523

2010年阪大 理系第3問

[B]オイラーの多面体定理の問題(2010年阪大理系3)


l、m、nを3以上の整数とする。等式

$$\left(\frac{n}{m} - \frac{n}{2} + 1\right)l = 2$$

を満たすし、m、nの組をすべて求めよ。

(2010 年阪大理系 3)

\$ = Oo On O, 72 Oo On On-1 A= Ch-2 Ch On-1 ()00,0203 On-27 Esch hour polytope. = $\int_{0}^{\infty} O_{(c)}$

