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Chapter 1

EEMDOER

Introduction

QCR" ZREBELLTRZERT 5.

e C®():={p: Q=C|pldC®#H}
e D(Q) ={p € C>®(Q) | Supp ¢ H' compact}

Distribution & & A : D(Q) — C TCHRENOEHRE LI HDTHSD. T, Eield"D(Q) £
T — eBBIEAp) > Alp) "ERBIEEEKRT 3.

ZFD®ICIE, D(Q) ICRZ B THEZ ANZIHENDHS:

DQ) Ty = ¢ THIILIF, HZAVNI FEEK C QDB >T, Supp ¢; € K TH
D, EBD a=(ar,...,an) IWT, —HRIC D¥(ps — ) = 0 £ B

(BO-E8 0K [NO| TR, CAABEN L LTEDINT V. LRIRA S RN —DICE
F540).) COBETIE, DQ) ICIRA L% BT 3 & 5B E%E VNS,
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1.1 Topological vector spaces

K=RorC, | | Z#xELT3.

Definition 1.1.1. X Z K EOXRY MLZER, 7 % X OUMEE 3.
(X, 7) hitopological vector space(iIMHNY MILZEM) CIdRZHBILT L.

1. (Ty &%) FRD 2z € X IZDWT, {z} € X D closed.
2. MEX xX =X, (z,y)~ax+y ANT—EBKx X = X, (a,7) —~ az H* (FBAIHE
ICEAL T) Efe.

Remark 1.1.2. fitBXR 2 +)LZERE I Hausdorft.

Proof. f: X xX = X, f(z,y) =2z —y &BEL (2) KDEH. (1) &b {0} IFBAEE. £oT
A= f"1({0}) C X x X HB. & > T Hausdorff. O

-

Definition 1.1.3. X: K EORZ MILZER]. U TORHEZEERT 3.

1. BPEE E C X Hleonvex |, FBD t € (0,1) ICDVWT, tE+(1-t)EC E X%
CZ. (b EEMICECY, FRD 2,y c Bt € (0,D)IC2WT te+ (1 —t)y € E
LBk

2. BBDES E C X Hbalanced & &, FED a € K, |a| < 1ICDWT, aF C E X7%4% C




. CDEE0€0-ECETHB.

3. X Z K EOMAEANT MILERE 3. HPEES E C X Hbounded & &, FRD0ZF
CHESV CXIDOWT, H30<tg cRDBBHT, FEDt > tpICDWVWT, ECtV
CiRB L.

4.d: X x X = Ry X DOHERECTS. dHinvariant metricTH D £ 1&, EED
2,9,2 € X ICDWT, d(z+ 2,y + 2) =d(z,y) ZHcT L.

EEZNPR Z LU, convex X balanced %R IE R™ @D open ball D D DEEIZR/-L TLIL.

Remark 1.1.4. Convex, bounded |& translation invariant Tdé%. 2% D, E B convex ¥ bounded
BoIE, FEDac X IZDWTCa+EHESHD.

Proof. M\FECX,ae X &9 3.

[Convex DIFE] E convex £§3. 1.13HWSERBDt € (0,1) ICDWVWT, tE+(1-t)EC ET®
3. o THEEDL€ (0,1)ICDWVT

ta+E)+(1—t)a+E)=a+tE+(1-t)ECatE

EEDWRT.
[Bounded D3ZE] E bounded £ F%. 1.1.3H0'5 0€V C X open BH > T, EED ¢t > 0 ICDL)
TLECtV Th3.

EOTRILIFFEREDt > 0ICDOWVWTa+ E C tV THD. CHIFEEDt > 0IcD2WVWT
ta+1E CV ZREIRRV. T TROEHEREE R 3:

T

FiExXx(KxX)—1-XxxX X

(a> z, b? y) L ((I.ZU, by) — ((I.ﬁU + by)
FBRERDHHB.

1. 0 € VIZHERRBDT, (0,0) cUxU C X ERBMAERU C XHH>T, UxU CT V)
E7%3% . (BAMEDOERL T DEFM)
2. E bounded &£D,t > 0ICDWT %E CU. £2TH3ec>0hH>T,cECUi?.

UEERBHEDEDZ L ( IFBBISHLCTNELT), (0,6) x {a} x (0,e) x EC F~Y(V) &% 3.
Ut > 0IcD2WVWT ) .
Ea%—;ECV

ZRRY B. O

PEBD > 0DV T R, "HB30<to e RBB>T, EED ¢t > 4o ICDWVWT” #EKT 3.



Definition 1.1.5. X # K FOMHERT MLERE T3, X Dlocal basis |E, R0 X
TO local basis(FE) DT &, D&FD 0 DFEEH S HBBZEER BT, MERD0cUCX
open ICDWT, HBV e BHH-T,0cV Cc Ul LRBDEBTRDL.

Definition 1.1.6. X % K FO{EXRY MNLEBE T 3.

1. X Hlocally convex & &, X B0 D convex ZBHLED 578 S local basis ZIFDZ L.
2. X Hlocally bounded & I, 0 h' bounded ZRFIAEEFDO L.

3. X Hlocally compact&id, $3 0 DBFIEE 0 € V C X T, V D' compact BHDHH
3k, (BED locally compact £[E L)

4. X Hmetrizable& |&, HDHEREJ: X x X — Ryo BH > T, d DAMED X OLIEE
ALCLTHhdC L.

5. X N F-space& |3, 32 5Efm% invariant BB d : X x X — R H'H> T, d DA
N X OUBECFEILTHB L.

6. X ' Fréchet space& &, X ' locally convex DD F-space 782 Z L.

7. X H' Heine-Borel Property Z#D & &, EE D closed bounded H' compact %% C
. ("R" DBREAKSIEI /NI b7 WD Heine-Borel DEEMNSEKTWVS. )

CNUFELE>TULL. 1.3.1 T MNocally compact = BFRXTT] X MNocally bounded + Heine-Borel
Property = BEX7tl Z/R9. BRDT, locally compact R EIFHZBICEESBVWEWVWS T ET
H3.

1.2 Separation properties

Proposition 1.2.1. X # K FOMERY MLERETS. K C X %& compact, C C X %&
closed&3%. KNC =2 36, HD openset VC X T (K+V)N(C+V)=0 R
B2HDHEET .

Proof. a: X x X xX - X% az,y,z) =x+y—2H. KNC =2 &, K x{0} x{0} C
a X \O)THB. aBEHT, X\ Copen BDT, o 1(X\C)Hopen. &>T, K H compact %
DT, HBopenV C X T

KxVxVcal(X\O)

ERBHDNEETS. Lo TK+V-VCX\CTHY, ( K+V)N(C+V)=0%d. O



Proposition 1.2.2. X 7 K EOQAIENYT ~LERET 3.

1. C C X convex 2 5IE, C,C° B convex.
2. B C X balanced 251X, BH balanced. S5, 0 € B° THBDH5IE, B° H balanced
3. E C X bounded 72513, E, E° % bounded.

Proof. (0). EEAAICEWVWTESERZFLHTHLS

1.ae XIZDWT fo: X = X, fo(z) := a+z (SEEERR. EFIFBASH T f_, PEERICKE
BD5. FARRIC s e K\ {0} ICDWT, f5: X = X, fs(x) := s -z HEEER.
2. T: X xX =X, t(r,y) =x+y B EE, TIXHER. BERS5 U,V C Xopen IZDL)
TTUXV)=Upep(x+ V) THD, 2+ VIFELDHEEETHEZIDT.
(1). mg i, FEDt € (0,1) ICDWVWT, tC° + (1 - t)C° C C° THS (CHBREL). t € (0,1)
ZEET 3.
[C°IZDWT]. C & convex DT,

T(tC° x (1 — £)C°) = tC° + (1 — 1)C° € C

TH3. TIIABBRED, tC° + (1 —t)C° IF open BD T, C° ICFEND.
[CIEDWT]. XROBEREEZ 3.

F:XxX—1 oxxXx T X

(x,y) — (tz, (1 = t)y) —=tx + (1 — t)y

CDFIIEHRETHS. Lo CEROBAEEZAVWERER?LD F(OxC) c F(OCxC) th3.
CxC=CxC7DT, BT

tC+(1—-t)C=F(CxC)CF(CxC)=tC+(1-t)CcC.

2). a €K, |a|<1ETB. folr) =ar &HEL L, EROBARZTAVFEEELD

aB = fo(B) C fa(B)=aB C B

& 2T balanced T%H 3. ( RED aB C B IC B h¥ balanced Z FUL\T2)

0B ZEBIRETDE,0-B°=0€B°THH, FED a €K, |af <1ICDWVWTH, afgdht
FMEBERTHDDT, aB° = (aB)° C B° &7 %. &> T balanced.

MAEEEOBOER f: X - Y NERTHI L, FBD AC X IZDWT f(A) C f(A) THE I LIZRAET
H3.




(3). E° ' bounded I& E° C E &KDBESH. E H bounded Z/R"9. 0 € V C X open ZEET 3.
TITLIRERDL>0ICDVWTECtV THB.

Hchaialee LT {0}n(X\V)=92 TH3. {0} compact, X \ V closed &£ D, 1.2.1 h5,
HBdopen0e W CX T
{0} +WnN((X\V)+W) =2

ERB. K 0eW WV ZBKTS. (BLWN(X\V)#0R5, DD W aEH
W eRHDEHE, TN LEICFETS). E IE bounded BDT, FEDt > 0ICDWVWT E CtW
MELD tfZIZEEZRDT,

ECtW=tW CtV

& 2T F |& bounded. H

Proposition 1.2.3. X 7 K EOQAIENYT MLZERET 3.

1. 0€ U C X open7a 51X, &3 balanced open W T, 0eW Cc U & R2HbDHH 3.

2. 0€ U C X convez open 78 513¥, &3 convexr balanced open W T,0e W Cc U 7%
23HbDHH 3.

Proof. AR 6 > 0L T, Bs(0) :={a eK|la| < §} &&K.

(1). f:Kx X = X %Z fla,r) = az £TD. THITERLD, f1(U)IF(0,0) z2BLHEST
H3. £>C, HB0>00€V CX tidopenh®BoT, Bs(0)xV C f~HU) &Hh3.
W= f(Bs(0) x V) £&EL. W C U BBHBH. oW =50V THH, X OREKETH 3.

BOBeK, B <1IEDWVWT, BW C U5 BaV CW BB, (JaB] < DBEDT). &2T
W & balanced T 3.

(2). A= oo, acx U EFT 3. (K=C %5 5" D& S ICEEGS L TEBHELB)

[ Claim 1.2.4. A |& convex balanced TH 3.

Claim DFEEA. Convex ICBIL T (JtZ2 & > TEZR ML) BAS D balanced 2R Y. S €K, |f] <1
Z8B. PACAZTEIERWVW. 0eU LD, 0 ATHSB. £oT0-ACATHD. Th&b
BAOLLTRW. $3L || =145 =1 THBODT,

BA= () BalU = () ﬂﬁmyUc N Barrca
al=1 lal=t 8] 18]

|laf=1

£, (IplU CcIBlU+ (A —|B))U CcUICER. 0 € UIKZZICHEDS) &> T balanced TH
3. O



Z D A° B L W) convex balanced open THD & ZRY (FRBDERD W). TDTHICIF, 1.2.2
&D,0e€ A° THBZZzTmtEIERLY.

0€U&D, (1) h5%H3 balanced open 0 € V C U B’&H 3. V Id balanced DT, a € K, |a| = 1
IC2WTC,a VeV THD (ol =18BDT). £2T,VCcaV cal THZDT, L@ %E
o7,
Ve [)aU=4
lal=1

Z183. Vopen&D, 0V CcA @D WVWRT. O

e '

Corollary 1.2.5. X Z K LOMMENT MLZEBE T3, CDOEF X X balanced 7 0 DF
IED S 783 local basis Z3FD.

T 5IC X D locally convex (1.1.6 B8R ) %513, convex balanced 7 0 DRHAGED 573 local
basis ZHFD.

Corollary 1.2.6. X % K EQMEARY MLEME T3, FEOAVNI MEE K C X 1
bounded T#H 3.

Proof. 0eVC XopenZz&d. FEDt > 0ICDVWTECtV ZR9. 1.2.305, &3 balanced
open TOEW CV ERBDHDHH 3.

T X = Upep, "W THBZLETT. X C Uy, nW DBEFEIERL. [ Kx X - X
Z fla,z) == az EHL. FREDy € X IZDOWT f(0,y) =0 € W THD. £o7T fIdE:
BDT, (0,y) € W) &HB. TNED, 36 >0 0DBIAEU C X BdH>T (0,y) €
Bs(0)x (y+U)C fT(W) A3 FCi<shnzehld lye WehHd. LoTVWRTE

GKCX=Uez, "W TKIAYNIbBDT, HBnHH>TK C nW £78%. W Id balanced
BOTEEDt > nlZ2WTnW CtW THD. Ko TEEDt>nIZDOWVWT

KcnW CtW CtV

74D K |d bounded THB. O

1.3 Types of topological vector space

Proposition 1.3.1. X Z K EOMMERT MLZERETS. X D locally compact (1.1.68
B asid, BR%RIT.
512 X D locally bounded hD Heine-Borel property 352 (1.1.6 B8R ) 1251, BEXTT.




Proof. (1). X % locally compact £ §%. EENSHIHEF0€V C X TV hcompact BHD
NEETS. 1.2.6 55, V id bounded TH3. &> TV H bounded THD. &2T, {27"V},>1
H0 D local basis 12725, (fEED open 0 € W IZDWT, V bounded ZRD TV C 2W X723 ng
HENZH5)

TT0eV &b, VC UIEV(SE—F%V)'C“ZB%. V& compact £D, 3 x1,...,2m € X D'H DT,

VC(z1+3V)U- Uy +35V) (1.3.1)
8%, TECTRDESICHEL.

o Y = E?llKl'iCX
[ d::dimKY
o v,..., v €Y K LOERE.

Claim 1.3.2.

f K — (K x X)4 x4 X

(ai)gzl —(ai, Ui)?:l —(a; - Ui)?=1 — E?:l Qi - Ui

EHELCE K o X ITEHRER. FLT, f: K- VIIEMEEBRT, Y C X 1 X OFF
&5

Claim DEBR. A DS —EBPELENERLRDT fI3Es. /- f: K= Y II2BHTHS. C
NHAERICHEZDERZOHIC, 1 ZROELSICHERT S

S={zeK!||z]|=1},B:={z € K? | ||2]] <1} & (R! DKELEAIRTHS) 0 ST f
EFEAGED. 0 f(S) € X DD f(S)compact THB. (X |F hausdorff FDFALEETHH B).
&2 T 12305, %% balanced open W C X TO0e WHDW C X\ f(S) BHDHEFEET S.

W CBTHBZIETRYT. BLze fTIW\BHEELILLTS. EEDS [|2]| > 1 TH3.
Whalanced 2D T, f~'W % balanced, & 2T,

1

=00 W) c i w)

TH3B. THUE 2 e fTUW) ERBD, JILLHLBDOT, W C X\ f(S) ICFET 3.

IEl
FICEED r > 0ICDWT, f71 W) CrBTH3. K> TEED r > 0IC2WT, f~1rWNY) C
rBTH2. CHUF f1:Y 5 KIN0eY TERTHD L ZEKT 3. FROAy e Y IZDW

SRARZRIDER f: X Y Dz c X TEELI, fo) DEEOFRE V ISHLT, 53 « OFE U BEELT,
fU)CVEeRBZE.

10



T, U TORZEZ 3.

-1
y I kd
+y B l+f’1(y)
y L Kd

COMDKRENIFEETHS. £oT, f1:Y 2 KHEEy THERTHS. Chkb f: K- Y
(X[E4E.

Y C X HHEEETY. ye Y Z2EB. X =y, W (1.2.6 DFERBER) THHDT, t > 0 A
HoTyctW i3, tWopen BDT, y c Y NtIW THS. f1tW)CtBTfL:Y - KIH
BHEBRDT, Y NtW C f(tB) TH3. REICIBCKIAYNI LD, f(tB)BE5, F>THE
BRDT f(tB) = f(tB) TH 3. UEEDREFADLERL

yeYNtW C f(tB) = f(tB) CY
THD. Lo TyecY THD, Y =Y THEETH 3. O
AERICR . (13.1) KDY DEENSV CY + 3V THB. ThED
1 1 1 1
VCY+2VCY+<2Y+4V>:Y+4V

Ei%. ChEBRDEBELT, V C U, (Y + 5 V) 2183 5 {27V} 21 D10 D local basis IC7%&
32k, Y hWEEEBODT,

1 —
ve() (Y+2nV>CY:Y
n>1

8% X =Upen kV BOT, X CY EH3. oTY 2K BDT, X 3BRRT

(2). X locally bounded 52 Heine-Borel Property Zi#7c 9 £ 9 3. locally bounded %MD T,
%0 €V C X Thbounded open B'FEET 3. 1.2.2 £ D V H bounded. Heine-Borel Property &
D, VIEOYNT ;. £2T, X & locally compact %D THRXRIT. O

Remark 1.3.3. EDFIFADERNS K EOAMHERY FLER Y BERXITHRSIE, YV IFKY £
HTHD1 ZehTD@EBHSHNSB.

HorB X 2 K EDOMAANY MIVZER], Y € X Zd R KEDEBMETHLE, H5 K=Y
THRBENMD KIFFEAHDONFET D1 WS I bbh 3.

Proposition 1.3.4. X # K EQOAMMERT MILZEBETS. X D local base hEAKAR L
T2 (FHICE—TETHD ). COLIRD="%ZmcTHEd: X x X - RHEFETS.

1. dix X OfE%3EE T 3.

11



2. d |\ translation invariant, DED d(x + z,y + z) = d(z,y).
3. FEEDr > 0IC2WT, {z € X |d(z,0) < r} & balanced.

TSI X D locally conver THBDERET . COETEREJIE, EREDye X, r>0IC
DWT{zr e X |d(z,y) <71} D conver” ELHRBELIICELDENTES.

Proof. AR X @ local base B"EARBIRE T 3. BEZE>TRLTWLL.

(1). translation invariant ZREEBE d: X x X - RHFET B L. 1.2.3 & D, balanced open H'5
7% local base {V,,}5°, TEE®D n € Z; ICDWT

Virr + Vo + Vo +Vn C VW

ERBDEDICBNS. £CT
D = {Z 27" e, = 0,1 THREZRWT 0}
n=1

EEL. D0, ) DDEEDr e DIZDVWTr =37 ¢c,(r)27" ERBRTIS—EMNTHS. £
CT,reDU[1,00) ICEALT,

X (r>1),
A(r) := {
a(r)\Vi+ea(r)Vo+--- (reD)

EEERTS. (TORTRIFERMICERZ 2D, D DERHDSERMTHS). COLT0e€ A(r) D
FEED r > 01C2WVWT A(r) I balanced open TdH 3.

ECTROBEBZEERT 5.

o f: X >R z—inf{re DUll,c0) |z € A(r)}
e d: X xX =R, (z,y)— flx—y)

d | translation invariant 7’2 symmetric T# 3. (symmetric BDI&, A(r) H¥ balanced D T,
r—ycAlr)idy—zec Alr) ZRIEKT 3D 5)

[ Claim 1.3.5. fEED r,s € DU[1,00) ICDWT, A(r) + A(s) C A(r + s) DX D ILD.

Claim DFERR. r + s> 1 DBAIEEMA. £>T,r+s€ D ELTRLWV. rs,r+sEZRDELSICK

12



ANERR

r= a12_1 + - _|_ aN—IQ_(N_l) +OZN2_N _|_ P
s=/2 4+ 5N712_(N_1) + B2V 4.
rts=m2 ey 2V N 4

Case 1: B NHHB>T, a; +Bi=7v(i=1,...,N=1) DD, ay + By # v L8 BHE. D
EE an=By=0D"D, v = 1ICRSITZZ/HV. (CNUIETIICUTDELSIC

ap : 1 0 0 0 1
By: O 1 1 0 1
v o1 1 - 1 1 0
~— —~~ ~— O~ ~~
1 2 N-1 N N+1

E,N -1 FTIEDENDDEI >TEST, N DEFICED EADHRZNEZ—>THB. ) 5
M>2ICDWT
ar—1 V-1 +anVu CVy—1+ V-1 C V2

THd. UTM E"I’ﬁj\‘:j(gb\%ﬁtjét, an+o2VNyo+ -+ apuVy C Vi TH3. £oT
ay=0ICFETBL

Alr)=aaVi+ -+ an1Vyo1 +anVy +ant1 Vv +anvpeVvgo + -+ anVu

-~

0 CVN+1
CaVi+---+an-1Vv_1+VNy1 + Vs

E.M‘i‘:, A(s) cpiVi+--+Bn_1VN_1 + VN+1 + VN+1 —CZ@Z)U)_C,

A(r)+A(s) C (a1 + L1)Vi+ -+ (an—1+ Bv=1)VN-1 + VN+1 + VNt1 + Ve + Vv

CyVi+--+wwaVnoa+ v W
1
C A(r+s)

Case 2: TD&LS7% N HRVWEE, DEDEED I T o; + B = v DD ILDEIE, BHEIC
A(r)+ A(s) = A(r+s) Th 5. O

D Claim K OROD=D>Hhh 3.

(a) r,t € DUL,00) ICDWT, r <t 5IE A(r) C A(¢).
(b) f(z)=0< 2z =0.
(c) fla+y) < f@)+ f(y).

13



[ 8512 d 13 X £ transrate invariant metric £ 3.

D 3OO DI, (a).t > 1 DBEIFASH. t <1 DFEIL, t —rc D THZDT (BE%
EZ2%), LD Claim B5
A(r) C A(r) + A(t —r) C A(t)

(b). z =07 5IX
fO)=inf{r e Rso|0€ A(r)} =0

THD. BIZ f(2) =0R51E, FEDre DICDOWVWT, 2 € A(r) TH2, FICEEDn € Z, IZD
WT,z € A(5) = Vo, THB. X |13 Hausdorff T {V, },>1 1&0 D local base BDT, 2 =0 TdH 5.

(c). € A(r), y € A(s) ICDOWT,z+y € A(r)+ A(s) CA(r+s) THBDT, f(z+y) <r+s.
FoTrsICALTinfzENIETERB.

7 (b) X d DIEFEEM, (c) I&d D=AFRFERZRL TULT, dId symmetric transrate invariant
THBLIEFON>TWVWABDT, dIFIFLVEEBEE %4 5. O

(2). d h* X @ topology ZFFEETBD_LERT. 6 > 0ICDWVWT, Bs(0) :={z € X | d(z,0) < §}
EEERT . d(z,0) = f(z) THBDT, f DEEHD

B0)= |J AW

r<é,re DU[1,00)
THD. CDORTIHDS Bs(0) I& X D balanced open set TdHD. &7z Byn(0) C A7) =V, T
H3. TNED {Bs(0)}ss0 I& X D local base IC%D | d i X DLEZFHET 3.

X7 AEEDr > 01220V, {z € X | d(2,0) < r} l& balanced” & TICRLTe. &> TdHAR
LULEEREE &3,

X 7 locally convex 753, balanced convex &3 V, 23N TES. £>TAr)d
balanced convex IC7% D, Bs(0) HZ 5% %. convexity I translation invariant DT, 2D
y € Y IZDWT Bs(y) B convex £ 3.

O]

1.4 Bounded linear maps

Definition 1.4.1. X,Y Z K EQAIHEANY MLZERE TS, K-linear map A: X — Y A
bounded T&H 3 & I, FEE D bounded set F C X ICDWT, A(E) H bounded TH 3B L.
(DEDEED open 0 € V C Y IZDWT, 3ty > 0D BT, EEBEDt > to ICDWVWT,
AE)CtV &35 k.)
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Proposition 1.4.2. K EOREANT MLZERBOREER A: X -V ICDOWVWT, ROEH
ZEZ3.

(a) A &S

(b) A& bounded

(c) ERD X DEF {2 }n>1 ICDOWT, 2, > 0 (n— 00) BBIE, {Az, [n=1,2,...} C
Y (& bounded

(d) EED X ORF {z,}n>1 ICDOWVWT, 2, = 0 (n = o0) BHIE, Y ET A(z,) = 0
(n — 00).

CDEF (a) = (b) = (c) IFEICAKDILD.
T5IZ, X B metrizable R 51X, (¢) = (d) = (a) BEDILD. DFED LOEZHFIIEETH
3. B 1.5.4 D5, X D local base NERABESIE, EOFXHFIIEETHS.

\. 4

Proof. [(a) = (b)] E C X bounded £ §%. 0 € V C Y open Z& 3. AIFTEFRLBDT, 0 €
A™YV) C X open TH 3. &> T E bounded DT, t > 0ICDVWTECtA (V) THD. &»
Tt>0ICDWTAE) CtV &D, A(E) IE bounded &7 3.

[(b) = (¢)] X DRF {zp}n>1 Tan =0 (n—00) EBBDHDZEB. {z,|n=1,2,...} C X
H bounded TH3 & ZREFIFEBWV. 0€V C XopenZ & 3. 12305, H50cUCV K3
balanced open B'% 3. z, = 0 LD H B ng H'H > TRHHEDIIDLSICTE3.

en>nydblz,clU. CHUEz, - 0DERFDHD.
o HBt)>0DH T, FEDt >t ICDOWVWT, 1,...,7, € tU. THIE 1.2.6 DFEAD 5.
(U h' balanced I&Z ZICfES )

U |F balanced 2D T, (BEBEDBIF L) > 1 LBRDEDICtg ZBDERT), t >ty AHBIF U C tU
£%%. $oTt >t B5E {2, | n=1,2,...} CtU &b, bounded TH3.

[(c) = (d)] X & metrizable & 3. 9% & X |& countable local base Z}fDDT, 1.3.4 £ D,
translate invariant metric d: X x X — R T X OEZENT 25 DHEFEET S.

X O {2n}nz1 Tan =0 (n— 00) LHZHOEMS. ST %

1

d(25,0) < 15

ERBZDRARDEAREHL. (7c72L 2, =085k, :=n) k, — 0 TdH3. dH translate invariant
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RDT,
d(knzp,0) < d(knxn, (ky — 1)) + d((kn — 1)y, 0)
= d(zp,0) + d((kn — 1)z, 0)

£2TX EThyz, > 0THB. (¢) DIREZEEST, {A(knzy) | n=1,2,...} CY [F bounded
THB.

TTEDS A(z,) 2 0ZRT. FRDO0EV CYopenZ & 3. 1.2.3 & D balanced ZIREL TR
W {A(kpzn) |n=1,2,...} CY |Ebounded BDT, 5t >0HhH>T,

(A(knzn) | n=1,2,...} CtV

EHBB. ky,—o00&D, HBngh'Ho>T, EEDn > ng ICDWVWT ﬁ >1&7%%. 5V I&balanced
BOT, LV CVEBDB FLDBLn > B5IE, Az, €V THB. Ko TRROEERNS
A(zp) > 0THB.

[(d) = (a)] X metrizable £9%. A B0 TEFEIZTEIERL. EIEE A D0 TERTHEVWET
B, BHBIMEFEOcV CYDHB>T, EREDFEFE0cU C XICDVWTAWU) gV THD. &oT
X |SEEBEZERIB DT, FRED n > 1ICDWT, HB 2, € X BH 2T, d(z,,0) < %73"3 Ax, €V
ERB3HDDHB. Thidz, —» 075H, Az, IF0ICPERLABVDT, (d) ICFET 3. O

1.5 Seminorms and local convexity

Definition 1.5.1. X & K EOMMEXRT MILERETS. BEffp: X — R Hlseminorm & |&
UTD2&EzHE-dlL.

o FED z,y € X IZDWT, p(z +v) < plz) + p(y).

e FED aecK, ze XIZDWT, plax) = |alp(x).

\. J

Berkovich D XA T, D seminorm (X" faithful seminorm” & E(XNBHD S L L.

Proposition 1.5.2. 1.5.1 DFEEICEWVT, XHAWEDIID. 72721 pld seminorm £ 3.

1. p(0) = 0.
2. |p(x) — p(y)| < plx —y).
3. p(x) > 0.

4. {r € X | p(z) =0} C X & KARAERD 2=/
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5 A={r e X |p(x) <1} C X & convez balanced.
6. p(x) =inf{t >0 |tz e A} THD. UTAED inf%Z pa(z) LKRT.

Proof. (1). p(0) =p(0-0) =10|p(0) =0&D.

(2). p(z) =plz —y+y) <plx—y)+pW), p(y) =ply —z+z) <ply —z) +px), ply —z) =
| —1p(x —y) THB. CNZHAEDEZLERD.

(3). (2) &P p(z) = p(z —0) > |p(z) — p(0)| > 0 HDT.
(4). (3) £ 1.51&D.
(5). convex ICDWT. FBD x,y € A, t € (0,1) ICDWVWT, EEDHS

p(tz + (1 —t)y) <tp(x) + (1 —t)p(y) <1
THBDT. balanced ICDVWTIE, FED z € A, a €K, |of <1IZDWVWT

plaz) = |ap(z) <1
BDTare ALK3.
6). z€ X, t>0IZXFL
tlzcA o pitlz) <1 & tpx) <1 & pla) <t

THBDT, inf{t >0t 1x € A} = p(z) ERB. O

Definition 1.5.3. X % K EDOMMEARY MLZERETS. P % X @D seminorms DFRE ¢
3. P hiseparating& &, FBD x € X \ {0} ICDWVWT, 2 pePHH>T, p(z) >0 L#&
3CZck.

Theorem 1.5.4. X Z K EDOXNY MLZERE TS, P Z X D separating & seminorms @D
BE93. peP, n€Zy IDVWT, Vipn):={ze X |plx) <Li} BT,

B:={V(pi,mi)N---0NV(pp,n.) | r>0,p; €P, n; € Z,}

£9%. COLE X DU 7 TREFBLTHLONIE—DFET 5.

o (X,7) &K ED locally convex FIAENRZ JLZER.
o BIE (X, 1) D local base.

I 5ICZOAHENY FILER (X, 1) ERE R

17



(a) EEDpe P, p: X — RITES.

(b) EFRDERER E C X IZDWT, "E D bounded THB "' &lF, "EED e PIZD
WT, p(E) C R bounded THB " & L [FHE.

& o T separating 7& seminorm H'5, 7=72—2® locally convex {UHENT ~ILZEFDEEDE £
D, 1 seminorm HES open ball H' local base ¥ 72 3. boundedness & p h5HH B.

FrBLPHAAIBRLASIE, BIFAE. £25T1.34&D (X,7) Id metrizable T#%H 3. $FIC Fréchet

space, 2% D locally convex 7D complete invariant metric Z#§D (F-space) ZEf & 743 (1.1.6 8
5.

Proof. 772" B Onz 1T EB LIt DDEHESLE TS, DFED

Tl:{ U (Bi+ai)|Bi€B,ai€X}

i€EAEA

£¥%. 1L A =0 DBEE Uicnea(Bi +a;) =0 LEDB. TDr HMIABICHES T L &R
F(ChPRShhE—MHHE23)

(1. oer FEBE. X er5 X = U, (V(p. 1) +2) £D.
(2. Uyer = U Uy eTldr DERDDS.
(3). U, UpeT = U NUyer. CHUIDED PRI LVLWHDTTEICNRS.

Uy = U($Q+Ba) Uy = U (y5+Blﬁ)
acl BeN

ET3.70,ys € X DD By, By € BTHB. DL

Uinla= | J [(@a+Ba)N(ys+ Bp)]
acN,BeEN

KO TRIREZLIE 2,y e XDDB,B €eBIZCOWT (z+B)N(y+B')erTHB. 7 I&FIT
FELD, y=0 & LTLLW. TEHICUTDLSICB, B Z2EDHB

B:=V(p,m)N---0NV(py,n.) B :=V(p,n)Nn---NV(p.,n.)

we(x+B)NB' £3%. §5&mi,m), €L, &

1 1 1 1
— < — —pi(w—1) - < — —pir(w)

m; n; mi, TLZ-,

EEDBDE, w+ ey Vpi,mi) NUi_, V(pi,m}) C (x+ B)NB £%23ZZrRd. (BHEInH
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RENNE (z+B)N(y+B)erldwicBLTAHESELNEIER3.)
gew+ ey Vipsm) NU_, V(pl,m)) £ 3. RET L,

pi(§—x) < i pi(§) < i/
n; [

TH3. 1 2BICOVWTK, we (z+B) & Ecw+ i, V(pi,mi) &D, seminorm OHIEMSZ
fE-T

PilE — ) = pil€ —w - w - ) < i€~ w) 4 pilw — ) <

TH3. ZOBRBweB ree U, VL m) BEoTLEEEABICLOES. Lo TWRT.
Ch&DRA DD,

o TTREIE (X,7) TAMER. ChFUer=U=,Bi+a OFICEITZDT.
e FEDpePICDOVT, p: X — RIGES. CNIE15.2&D [p(r+y)—p)| < p(y)

o,
p(z +V(p,n)) C (p(x) — 3, plx) + ) CR
THH5DT.
o FEDV € BIZCDWT V & balanced convex 7 0 DBFLE. & seminorm DEE
hrobhbh3.

UT%RDDEMRBRLTWVL,

[B1& (X,7) TDlocal base %3]0 €U C X open, DED U e 7 T3. EENOHDr e X
Epi€P,n; €2y D> T

Ocxz+V(pr,ni)N---NV(pr,n,) CU
THB. FIZ pi(x) < n% NONECH m% < n% —pi(—z) e B, UMEOEDEMmEEIL LT
0eV(pr,mi)N---NV(py,my) Cx+V(p,ni)N---NV(pp,n,) CU

&3, Vipy,m)N---NV(p.,m;) € BHDT, BIE0DEXRIEFERLEED, DED local base T
H3.

(X, 7)1 Ty ZEfE7% 3 C &) FIREIEIEEBRERD T {0} A closed ZREIFRL). P (& separating
&0, EBD 2z € X\ {0} ICOVWTHB p, e PHBOTpo(2) #0THB. &2, ;- <p(x) &
RBZERBZ NS, 1.5.2 &b

X\{0}= |J @+V(psna)

zeX\{0}
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THBehbnd. £oT X\ {0} & open T, {0} & closed.

BLEITEFRLRZZC] X xX = X, (2,y) —2+y T3 (z,y) € X x X TERMTHZ_L
ZREIXFRV. Bldlocal base BDT, FED U := V(p1,n1)N---NV(ps,n,) € BIZDWT, $H3
WeBhH-T,

(+W)+y+W)Cax+y+U

ERBIEZETREBIFRWV. €543 W LTV (p,2n)N---NV(py,2n,) ZEHUTRL.
[(RAZT—BITERRBZ L] KX X = X, (a,7) —~ az (a,2) e Kx X TEHETHD czntid

BUL\. Bl local base DT, FED U :=V(p1,n1)N---NV(py,n,.) € BICOWT, H2 W € B
E,ac KDFRIDEEK D HBH->T

D -(x+W)Cax+U

ERBZBIEERBIEBL. THUIW =V(p,m)N---NV(py,m,) EBEZF, a+ae D, WIC
2ULT.
a+az+&) =(a+a)(z+§) —axreV(p,n)N---NV(pr,n.)

E7%% & 5106, m BBANERV. TN [l < L EBB&ESI0m; BHHKRE Loktiic
S(le] + L) < o BB &SI EHHNE < LHER L.

i

U EDfERE LTRNEZRS.

(X, 7) I3 K LORMMERD ~ILZER.

. Bl (X, 7) @ balanced convex set H5 7% local base.
. D12 ZTEIAAE T IEHE—.
CFEEDpePIZDOWVT, p: X — RITES

e N

=& IZ boundedness DFHETIFICBILT. TE C X H'bounded THD1 Zid, MEEDV cB
ICDWT, ¢t > 185 ECtV THD1 CCLRfE 2hid MEEDpe PICDO2VWT, n>> 17
SIdECtV(p,n) THD] CeEME. ik MERED p e PICDWT, p(E) C R ¥ bounded
EFEMETH 3. (ECtV(p,n)ldp(E) <L EELEBKTH B ITER) O

1.6 Cauchy Sequence and Completeness

7~

Definition 1.6.1. X # K FOBART MILEBE TS, {2,}22, C X HCauchy 7 I,
FEDopen 0 €V C X IZDOWT, BB ng € Z, BH>T, FEDn >m > ng ICDWVWT,
Tp— T EV ETRDB L.

X Hlecomplete & I&, FERED Cauchy FIHNUEKT 3 Z L.
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1.2.3 &D Cauchy F|DEEICHE TS V |F balanced ZIRE L TRLL.
Remark 1.6.2. X H* metrizable T invariant metricd: X x X - R%Z# D¢ 9 3.

C DB {2,122, M Cauchy SITH B C &I, BEOI—>—FDERER MEED: > 0ICDWT, $3
ng € Zy BH>T, EED n > m > ng liCDWTC, d(zp, zm) < el E[EMETHS. EBHIF invariant
75 d(xy, — xm,0) = d(xn, xm) THBDT.

Remark 1.6.3. Cauchy 5l (D% FES) IE bounded.

Proof. FEDopen0 €V C X Z¥&3. 1.23&D,0€ W C V &% balanced openW Z & 3. &
Bng €L BB>T,EEDn>m >nglCDOWVWTC, o — 2, €W E78DB. Flcxy,..., 20, € LW
ERBEDHB g > 1ZEND. t > 20T BE, n>ng BHIE, W I balanced & D

Ty = Tng + (Tn — Tpy) € oW + W C (2to)W C tV.

Fren<ngBSIEx, ctoW CtV. £2T. £2Tt> 20 WBIEz; €tV THB. O

1.7 The space C*(2) and Dy

Definition 1.7.1. Q ZZTHAUVR" OFES, K CR*"ZAVN\NJ ERE T 3.

e C®°():={f:Q—>C|flFC®H}
e D ={f€C>®)|Suppf C K}

EHEL. INslE C-vector space THB.

.

Distributions DE&KIC Dy DI ETHS. COHOBEZRIIRTHS: (AFEICEALTIE1.1.6 B8R,

Goal. % C>*(Q) OWUMET, Re@mlsiBzANS.

o C°(Q) IXMENY MLZERICHES.

e Fréchet space. D& D locally convex H'"D complete invariant metric Z3#§2 (F-space)
e Heine-Borel property Z#FD.

e FEDIAVNI FEE K CQICDWVWT, D C C®(Q) I closed.

UFQEZETHRULVR DEESET 3.

Lemma 1.7.2. $233IYNJ bEREDII K| C Ky C - CQ BHoTRZEBICTHOH
FETS.

1. K; CK19+1

21



[ 2. Q=UZ, K7

Proof. a € R", r > 0IC2WVWT, B(a,r) :={z e R" | ||z —a|]| < r} EEDSB. Bla,r) = {x €
R" |||z —a||<r} THB.

B:={B(a,r)|a€Q"NQ, r € Qso, Bla,r) C Q}

YE%. CNEAEEDT, B={B1,B,,...} LHRTEINS.

K1 = B1 &93. LX—F Kl,. . .,Km b‘{’EhT:H%tC, d>IND l‘%% Km+1 c N —CKm (- KZ-H 4
AT HDZIFHRIICHER T SD. v € K ICODWT B(z,r,) CQERBDr, >0%ZE3. K, AN
IRBDT, Ky € Uiy B(zj,10,) £TES. 5 C =, Blwj,ra) £H<E, CAVNT T

K,cCc°cCcqQ

%%, £>T Kyt :=CUBpy ESIFIFRLL.
FED K\, ... . Ky,... DBEEDDS, Q=2 K £12%. O

UFa=(al,...,on) € ZT ICDWVWT
D® := 03} - Opr

EEDD.

Proposition 1.7.3. 1.7.2D&SIC{K,;}X, 2. FED N € Z IZDWT
Py CF(Q) = R f = py(f) = max{|Df(2)| | # € Kn, |a] < N}
EHEL. CORPRDEDILD.

1. P:={pn | N > 1} & C®(Q) D seminorm h* 5783 separating family. ¥ 1.5.4 D
5 C(Q) & locally convexr hD invariant metric 32 C LOARIENT ~LZER &
VANZSY

2. FBED € QICDOWT,

evy : CF(Q) = C  fev(f) = flx).

EEHTHD. FICERDOIAYNTF K C QIEDWVWT, Dk = (e x Kerevy C
C®(Q) THBDT, Di C C(Q) I3 (1) DEAET closed TH 3.

5. Vv ={feC® ) |pn(f) < %} EBL, {VN | N > 1} 3 C®(Q) D local base &
AN
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4. (1) D C>=(Q) DAIABIE, {K;}32, DEDHICL 574,

5 {fi}2, 2 C®(Q)DRFILL, feC®Q) T3, (1) DAHET {fi}2, A fICUER
T3, MERD a € ZD IZDWT DS B DO f ICRFI—RINER $ 3 "C L L[E
BTH5.

. J

Defi B Df ICBF—HRIR T B & id, FRDOAVNT FEE K C QIZDWT supye{|D*fi —
Df|} - 0&BRrBd L.

Proof. (1). py D' seminorm & 72 C EISEEICHHD. P := {py | N > 1}separating I3 C
EZERT. feC®(O)\{0} £TD. EEDND2QT f(2)A0LBB2DDHHB. £>T1.7.2
&D, HBN>1Trc Ky EBRDDDONEETS. py DEED'DS, 0 < |f(z)| < py(f) &%B.
£oTWR L.

2). 2€Q, fEC®Q) LTH. RILIE MEED: > 012D0W\T, $3 (1) TOLABICHIT3
HAES0cV CO®Q)DEFEELT, FED g VIZDWT |evs(f +g) —evs(f)| <e &7%831 T
B3, (f+ VI feO=0) DREEEICES.)

e>0893. Vi={geC®Q) |pn(g) <e} &HLK. 1.54&D py : C®(Q) — R I& (1) DfIHE
TERICHEDDT, VIF (1) TOMBICEITIREEG L RS FED g VICDWT,

levs(f +9) —evs(f)| = [g(@)] <pn(g) <e

bW T
(3). 15ADB, i € Ly, s € Ly oDWT, Vi) = {f € C2(Q) | pi(f) < L} LD,

uz

B :={V(pi,ni) 0N V(pi,,ni,)}
£93%. 1.54H5 Bldlocal base THD. o Tnd&ld, MEEDV = V(py,ny) NN
V(pi,,ni,) ICOWT, B NeZ  BH>T,0eVyCV ERD] CETHS.
V=V(pi,,ni,) N NV(pi,,n;,) €3, i3 <--- < i, ELLTRW. m:=max{n;,...,n; } &
L n:=max{i,,m} EHEL. py <pa <--- THBILITEFRT DL
VN =V(pn,N) CV(pi,,m)CV

£78%. 2T {Vn}n>1 ldlocal base &8 3.

(4). {K[} Z 172 %@ SOV NY FESKREL, p, & K ICHIGT 2D T3, [ERD
N>1IE2WT, BB N > NHFEELT, Vi, =V, N)CV(py,N)=Vy THB1 C&%
Y. CNETHIEHTELDELROISE, ZOOMEARL I ENERS (3) &0 {Valns:
I& local base &7 25DT).

N>1&9%. Ky CQ=Ups K THBIDT, Ky DAVNT bELD, H#Z N > N T
Ky C Ky, £%20DhH3. &> Tpy < ply THEBDT, V(phys, N') € V(py,N). &o2TW
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z1c.
(5). TC>®(Q) DAIAET f; — f1 1F TEERDON > 1IZDOWT, H3 00 > 1 HBH>T, FED i > g
ICDWT, fie f+Vy THD1 CCEEMETHS. ({VN}ln>1 & local base £%835DT) T T

1 - -
fie f+Vy & pylfi—f) < & EBD |o| < NIZDWT Ky ET D - D < &

THZDLIZERT 3.

COQ)DMETf —» f&92 FEDOK CQIAVNI MIDWT, 51> 1H0H>T, K C K],
EBRBEED a e Z ICDWVWT N > max(lal,l) BBEIICNZLD. §2LHBDig > 1DH>
THEEDIi>ipglc2WT, fie f+Vy %D, £oTi>ip BHIE

sup{|D"f, = D*f[} < sup {[D*fi = DI} < pw(fi — ) <
zeK zeKn

TH3. F>oTKLETEED a e Z? IZDWT Df; B DO fIC—HRINR T 3.

HIC MERD a e Z ICDOWT Df; XD f ICIRFR—HRINGR) I3 ERET S . 8IC Ky £ET—
BINRT 3. |o| <N &hHD aldBRBDT, C°(Q) OMHMET fi — fHEXS. ((5). DAY
OHICE > FMEMISEET S.) O

Proposition 1.7.4. 1.7.3T® C*(Q) DAMABICE > T, C°(Q) IFAAERT MLZERMICED,
Fréchet(locally convex H D complete invariant metric 2§D ) DD Heine-Borel property
ZHFD.

Proof. 1.72 D& DIC{K;}2, Z2ED. 1.7.3DKSIC
pN :CF(Q) >R fpn(f) i =max {|Df(z)| | z € Ky, |a| < N}

ZEB. Vv ={feC®) |pn(f) < £} £BLL, 173 D5 {Vy}n>1 1 local base £ 3.
1.5.4 5 C°°(Q) I& locally convex DD invariant metric Z3F2 C LDMENRY MILEB G 3.
& 2 THD IF5Z & & Heine-Borel property Td 3.

[l {fi1* € C®(Q) Z Cauchy Sl F5. EENSEEDN > 1I1I2D2WT, B ip > 1 H
HoT,ERBDi,j>iglCDWT fi—f, VN E%BDB. CTTfi—fieVy&ld MERED|a| <N
E%83 allDWT, supg,, [DYfi — DOf;| < & &% 31 CCLRETH 3.

KOTEED a e Z IZDWVWT, |of < N B SIE, {D*f;} & Ky ET—#k Cauchy %553, (DO F
DEZEDe > 0ICDWVWT, HBig > 1 DB T, EBDi,j > ig ICDWVWT, supg,, |[D*fi—Df;| < e
TH3.) F>2TEERD a € Z0 IZDWT, {Dof; 1, IIEEQAVNY FEE K C Q £ET—H
Cauchy F| & 7% %.

a=0cgrE, {fi}32, FIEEDIV/NY FEELET—Hk Cauchy F1& D, 3 O _EDOEHEIH f
DRH>T, FEOAVNY FEELET {fi}2, & fIT—HRINEKRT 3. XD Claim &0, f € C°(Q)
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RO, EBD a e Z IZDWVWT D B Df ICRPI—RINR T 3. £oT1L7.3H5 {fi}2, &
fICINERT 3.

Claim 1.7.5. (a,b) C RZBEXMBE L, fi: (a,h) - R% C B 3. f, g &= EHRE
BeLT, (a,b) ET—HRINER f; = f, [l > g TBRERETS. CO [ IZWMARIEED D
g=[f&%3.

Proof. h>0&93L

’f(w VRS (G
< ‘f(x + h})L —flz)  falz+ h})L — Julz) | fulz h})L — @)

< ‘f(:c + hZL — @) falz+ h})b — fn(®) ’ T |f (e + 6k — g(o)

< 17+ R) = fale D) 1)~ fule)] + | fal + 0B) = (o + 01)] +1g(z +68) — o)
< 296?(15,2) (@) = ful2)| + P l9(2) = fr(@)| + lg( + 6h) — g()]

(1.7.1)

7%, TITOe (0,1 g M@ — g1y gh) B ESICL B (TIEDEER L DT
3. 0ldn, hICHKIET B)
FOTEED e > 012DWVT, h > 0% supge(_1,1) lg(z +0h) — g(z)] < § LRBKSICED, L
Tn%k 5
g

= sup |f(x) = fa(z)| + sup |g(z) — fr(2)] < 5

h z€(a,b) z€(a,b) 2
ERBESICRAE LU, (1.7.1) & D, e > 0ICDWT, %3 h > 00> T, |[LESE _ g4 <
c¥B3. EoTVWRT. O

[Heine-Borel Property ICDWT] 7R$ C EIFERD closed bounded set AV NI b3 L.
E c C*(Q) closed bounded &9 3. C°(Q) IF metrizable & D, EHESITHD. £>TIAVN
JhTHBCIFRHIVNI FTHB L EMETHS. (EDRFIIVNT MEZRLTWVL)

15ADBEED N > 11I22WT, py(E) C RiF bounded THB. &> TH3 My >0hH > T,
EED |a| < N,f € EICDWT, Ky ETsupg, |[Df| < My &%%.

Claim 1.7.6. a € Z £ 93. FED |o| < N ERZ BB N ICDWVWT

F:={Df| feE}
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& Ky ETRZHB/-T.

o —RER. DEDHB M >0DHBo>T, FRED Df € FICDWT, |[Df| < M.

o —FREIREEER:. DEDMEED > 0ICD2VWTHB 0> 00H>T, FBED Df € F
ICDWT, |z — 2| < 6 BB | f(z) — f(a)| <e.

Proof. —#xBRIIBH IR LT, —KEEEERZRY. fE B, F:=D*f&9%. = (21,...,2,),y =
(Y1,--,yn) € KN E53. FHHEDERLD. $% M, D'%H>T, Ky £ETIFEF(2)| < Myp
£7%8%. £oT

|F(z) — F(y)| < [F(21,- . m0) — Fly,ze, . xn)| + -+ [F (W1, Yn—1,70) — F(y1, -, yn)|
< Mn41 [|.%'1 _y1| +---+ ’$n_yn|]'
(1.7.2)

MWR 3. Chig—KEREEERZE<. O

NeZ, £35. {gn}nzl C {f|KN |feEET B CDEE {gn}n21 DERRFY {gnk}k21 T, £
BD o] < N £B3 a € 27 IeoWT, Doy, H—HINET BEHFI RO L 2RT. (S
Ascoli DEIEDZHZ £123)

{ZL‘1,£E2, e ,} C KN #d-f KN @ﬂ%f*ﬁ%@gﬁﬁﬁétjé {gn}nzl ‘3: _*iﬁ??“ck D, &55 M >0
W& > T |gi(z;)| < M £ B,

MUF T 295 {gn, }i>1 BB>T, BED i > 1IZDWT {gn, (zi) }i>1 IFNERT D1 &
LY. CHINAERE i = 10K ALY 7—/ DAL a S AOEERLS
{g11(z1), g12(x1), g13(x1), ...} C CHUNRT B K SIC g1 DEND. RIC {911} DEBDFI%Z S F
< EY% C (\f_—t, {921(1‘2),922(%2),923(1'2), .. } cC 73‘142?&3"53: SIC g2k b‘HW’L% Ch’i’:‘fé'@@i@?‘
ERD KD BHAFHENS.

gi(z1) gi2(z1) gus(z1)
921(z2)  g22(w2)  go3(w2)

ZTT g 1= G EEFE, THOBRL VAT B,

ITCTLo {gm}m21 T Ky ETH3 g IC—HRINR T B &Y. g: Ky —C ZUTOLSICHE
K3 2 Q\Kny%B5ldgx)=089%. v€ Ky £F53. {gn(z)} C Cld Cauchy 5| TH 3
CCZRT.e>08TB. THRELRDELIICTES.

L] {gm}21 tzt—ﬁlﬁﬁfﬁi@ﬁﬁ@@’c, HZERZDEES Uj COMHB-T Ky C Ué‘:l Uj ya)
D, FEEDmM>1DDz,y € Uj ICDVWT |gm(z) — gm(y)| <ec EBB.

exclU ELTRLW T3¢LE0D g T“xj cU, ERBDHDOIEINS. §DrHD My Had -
T, EED m,m > My ICDWT |gm(z5) — g (z)] < e E7R2B.
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LELDERD m,m > My IZ2WT
9m () = g ()] < |gm (@) = gm(@5)| + [gm(@5) = g (5)| + |9 (25) — g ()] < Be.
%%, 2T {gm(z)} CCIX Cauchy FITHSD. TN&D g(x) :=limy—00 gm(z) ELTERT

3.

HLIETOHERERDET. ((D'gm}mosoo DERFNEELS.) 1.7.510& 2T, BDF {gm(2)} &
QD CN JEBE g & > T, Dy, — D IE—HRUNEK T B. *

UFENSFIAVNI FTHBEETY. {fmlm>1 CEETE. FEDN € Z, ICDWVWT, &
BEBDF { fn, } B Ky £T OV REBBIC—BUIRT 2 DH B3 & > THARREEBAVB L
T, HBWHG {frn,} BB T, EED o € Zy ICDWT {D° [, } BFI—HEINET 35 DHEN
3. ZD f, 130 LD C™ KB f ICBFA—HRINRT 3. £>TKRFIAVNT +THSB. O

1.8 Space of test functions and distributions

FIEHT QEZETHVR" OREGET 3.

Definition 1.8.1.
DQ)={¢:Q—C|pC™, supp(p) AT~}

£9%. D(Q) Dt test functionZ LS.

COETIIUATZTRY.

Goal.

e D(Q) H'locally convex complete with Heine-Borel property Zi@fc I i@ T ~JLZE
BICBBESBAHME r HFET S L. (S ORISR AIREC IR 540, Ko T
Frechet & IXE R 7F\LY)

o C*(N)IC1.7.3DIMEZANDS. COKD(Q) — C(Q) ITEHRTHS.

e KCQIOYNUbhEL. Dk ={f € C®Q)|Suppf C K} £93. §5Inl
C>(Q),D(Q) DEDEETHS. COEF Dk ICFEEINS 2 DDIAMARIZRE L TH

4DYg,, — D% DUXRIK, BEF5K K2 EICLEEADRL. #9%ZLTVWADTERZEZZ3DIIEATHS.
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3. S TUTOREH KD IID.

closed subspace

Dkt
¢
closed subspag \L\con '

FITHEEDN >0IC2WT
|-l : D) = Rso, @+ |lolly =max {|D%(x)| | a € Z%, |a| <N, 2 € Q}

9B, || |nIECARZFILERDQ) D/IVLTHD, || |v < || lve BB,

Lemma 1.8.2. K CQ%ZIOAYNIZbLT3. {||-|In}n>0 CHEIND Di ORI, 1.7.9
TO {py}ns1 KL BMABEALTH S.

CZTH{| - In}nso CHEEIND D DRABLIE, f € Dk ELT, N € Zy,e > 012DV,
{oeDk||lp—flly <e} BERTBMUETHS.

Proof. 1.7.3 D& SICAYNT FEEDI K C Ky C---CQTOQ =5, Ki, Ki C K7, T,
pn(p) = max{ |D%p(x)| ! aeZl, la| <N, ze Ky }

CRBEDICED. KCQIEAYNIREDT, 2 Ngh'd>TN > NgBSIEK C Ky &
"3,
FEOmMcZ, ICDWT, %3 NWH->T,

{r €Dk | llelly <e} C{v € Dk | pmlp) < e}

THBDL%ZRY. meZ, ZBETS. $5L N > max{m, Ny} B2 NICDWT, p € D &
513, Supp(p) C Ky THD. K2 TEEDDS ||ollv =pn(p) £HD. AEELD N > max{m, Ny}
wHiE,

{eeDk|lleln <e} ={p € Dk |pn(p) < e} C {v € Dk | pm(p) < €}

EDIEERT py & || - |v DIREIZANBRXTEHEMI B EHTES. Ko T2 D2DMUMEIIELCTH
3. O

Remark 1.8.3. {|| - [N }n>0 IC& 2T, D(R2) locally convex metrizable % C _EDRAENR Y ~JLZE
FOBEZFD. NENIFTHETIEAHEW (£LTINIXIZLWIAETIEEW).
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Q=R &9% BABicZ IZDVWT, fZSupp(f) C (3,2), f3)=1,0<f<1EBHBELES

BBOHGEBE LS. (1 DRENHTL % Bump BEA-WLWAEDHD) ELT,

n

Wn::Z?%f(x_i)

=1

T 3. o, IFEABE LTRZHIT.

e o, I& C> T Supp(pn) C (0,n). FFICD(Q) DT THS.

e £1<i<nIZ2WT, (i—1,i) £ETIZ0 < ¢, < 5.

e HB M >0DHB>T, FED n,a € Zy IZ22WT |D%,| < M.(¢, DAL FICLDES
BULEHTINZS5NB.)

{ont 1& Al - [N} >0 DAIABICBIL T Cauchy 71 THS. Cnzmrnd. £, {| In}nvso D0 TD
local base I&

Ve ={f € DR) | [Ifllx <73}
EWSHEELTWS. 22T, 38 m > m > 1R5(E,

ml

1 .
Z 9i—1 (z —1)

i=m+1

1
2m

M

<
N

6 — ©mlln =

£783. £oT Cauchy 5 TH 3.

LHO UBFRISTFE L ALY, #BER o BMFEELTZS, (i + %) = 21—1,1 IC7E BV WTFT, Support (&
JYNT BICRB5730.
Definition 1.8.4. 1. KCQIOYNI T3 Dx DA Z {|| || n}n>0 TEDD
NBMUMBETS. CNIF1.82I2&D, 1.7.3 TOMMBERLETHD, $FIZ Dy 1& locally
convex, complete, metrizable, with the Heine-Borel property T& 3.
2. D(Q) DEEH& B %Z, "ZE T\ convex, balanced set W C D(Q) T, fEREDO OV /NY
FEEK CQIZDWTWNDK €7 ERBDBD"DEFD T S.
3. D(Q) DEEHET %, "Uie (i + Wi) ENNTBRDD"DEED LTS, ffZlie I
DWT, ¢, € D(Q),W; € T B.

Remark 1.8.5. (D(Q),7) [FMAEXRT MILERBEHES. (BTRY). (DR),7) ICHWVTIE, 1.83 T
DRF) {pn} 1& Cauchy FUICIE7R S 7N,

Proof. x,, := m—i—% £33, ¢ >0ICD0WT

Vi={p € DR) | [p(zm)| < cmV¥m > 1}
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93 £V ecpTHBDIERT. convex, balanced RDIZBASH. FEO K c QA /NNT b+
ICDWT K N{z, IEBRESED, VNDr € 7 BB, FICZV € 7 T(DR), 1) ICHBIFZ0D
FAETHS.

Cm = 2%% E93. THREEEDM >m>1I1CDUVWT,

1 1
[oms (Tmr) = Pm(Tm)| = om/—1 > om/ — Cm’

BB, &2 o —pom &V BB, THED (DR),7) ICBWTIE, 1.8.3 TOHF {p,} 1 Cauchy
[ESANE RS 0

Theorem 1.8.6. 8,7 %Z 1.8./ICHIT2 D(Q) DERHELTS.

1. 7 1ED(Q) DAIBTHD, Bl D0 TD local base THB.
2. (D(Q),7) 1& C LD locally convexr HAIFENY ILZER].

Proof. (1). &9 7 13 D(Q) DUETHZIELZETT. g €7lF184ICBVT, I =0 EBIFIFR
L. D(Q) e B&D, D) e rHEASH. £, 7 & union ") CWSBRETHLTWS. &2 T
meCkld, TV,herBoldVintherls DHERD.

ViVacr 895 e VinVhBED. $3L,i=1,21000WT, $3 ¢ € DQ) £ Wi € 8H
H->T,
pep+W; CV;

L5353 06 ¢ (0,1) T
W1 N Wy e fp D p+nWiNéWy CVinsy

ERDIDHEFEETZIczntEIFRV. OYNIMEEK CQ Ty, 01,92 € Dx ER2HD
Dk 1 C LDORIENRY MILEBTHBZDT, 56, € (0,1)BHB>T, o —p; € (1 —6)W; NDg
ETES. UELD, W, i& convex THBDT,

o+ 06W; C i+ Wi+ 6W; C i +W; CV;

(‘.’_73:%, £oT @+ ((51W1 N 52W2) cwvinV, O WR I ((51W1 NoWy € B ‘Et%%‘:bb‘%)
K7D 0Dlocal base THBZLIE, LDEMICEWVWT =0,V =V L LTERINIEONS.

(2). 1.8.4H5, (D(Q),7) ICEVWTETBREIABRERICES.
[(D(Q),T) & Ty ThdC t] Y1, P2 € D(Q) T 7'5 ©2 LD HDzES.

W={peDQ) | [lelo < ller —v2llo}-
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W & convex, balanced, 0 € W T EEDIAV/NI M K C QIZDWT, WN Dk I Dy THES
IC2%. DEDWepTHD. ELT, o1 ¢ o2+ WhHDypa€pa+ W THD, oo+ W C D(Q)
T open 2D T,

DO\{ei}= |J et W
2D\ {1}

D, {p1} € D) K& closed THB.

[MEDSERRZ L. T : D(Q) x D(Q) = D(Q) Z (p1,02) — @1 + 02 £TB. @1 + o DFFIT
BELeWZFEST, o1+ + W EDMNTD. &2,

1 1
T<<P1+2W,902+2W) Co1+p2+ W

T?ﬁv%d)’t, T (@1,@2) TEREED.

[(RAZ—EBHEHLED L] S:CxD(Q) = D) %Z (g, o) — ap £TB. TN (apg, o) T
B THDZRT.

KCQ% oo €D EBRDAVINIV MERL TS WepEds. THERMPHEDIID.
o WNDg C Dk IZHERBDT, 5> 0D0H>T, FED |a] <elZDWVWT, apy € %W
TH>.
e ap=0FTclFpe ﬁ}w DB, W Id balanced BD T, agp € W 785,
e pELWD Do <1HBIE, ap e W THB.

& 27T, |a| < min{e, 1} DD ¢ € min{3, ﬁ}W wold

1 1 1
myum%+@emm+§w+§w+?Vcww+W

E7%%. (W & convex balanced ZfE>) & > TR H T —1FH&EHE.
MELD (D(Q),7) 1&C LDOLRAERY MILZER. £ LT, B DIt convex TH BT, (D(Q), 1) I

locally convex. O

Theorem 1.8.7. VI E, 8,7 & 1.84ICBT3 D(Q) DEBHKRLE T 3. (D(Q) I3
TEANDS. 1.8.6KD, (D(Q),7)1d C LD locally conver 7RIMENT ~ILZERT, B1F0 D
local base TH B .
CDEPRDIE D ILD.
1. V C D(Q) % conver balanced set £F 3. VHHAEETHB LI, FED K C Q
IZDWT, VNDk & Dy THESICHRZ L (2FD VNDk € k) EIEME.

2. KCQEIAVNI MERLTE. ZOK, D — D(Q) IC& > THFE SN 3 EHHE
&, 1.84 TD 7 ERILTHS.
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3. EC D(Q) D bounded %2 51E, HZAVNI FEE K CQTE C D EHRZ3HON
BFEL, RO N € Z4 I2DWT, || ||nv : E — R I& bounded.
4. D(Q) |& Heine-Borel property 2.
5. {pn}y C D(Q) B Cauchy 1% 51F, HZIVNIMEE K C QDRH-T,
{on}sey C D D2, FED N € Z; IZDWT,
lim |[¢m — @ullv = 0.

n,Mm—00

L 5B, (BBEOEKE |- |y LT CouchyTICARBE NS L)

6. on — o in D(Q) BHEIE, BIAVNIFEEK C QDB T, {¢n}>, C Dx H
DEED a € Z1 ICDWVWT, —#RIC DYy, — o EIXNRT B.

7. D(Q) 1A AR BEWTERETH 3.

Proof. R® claim Z7R9 .

Claim 1.88. VCD(Q) ZMES, K cQZAYNI MERLTD. COBFVNDk IE Dy
L THEETHS. (DED VNDx e EVWS T L. ) BIC Di — D(Q) I&5EH:

Proof. FE®D ¢ € VNDg IZDWT, 30D local base W € B To+W CV EBR2HD
NEFEETSD. 9L p+WnNnDg CVNDg —CZ%D, W N Dk & Dy THESTH 3. J:?_C,
VNDk C Dk ISHEETHS. O

(1). = caim D5, <« IEDWT, V = o OEHZBESH. €5 THWEHZ, V e 8 &0 OK.

(2). Claim & D, D — D(Q) IFEFTHD. S>> THEIFE € 75 ICDVWT, BBV C D(Q)open
THH>T, E=VNDx ERZBDPHONEFEETEIcznttidRL.

Ectk, o€ EXT3. 7 DAMAIZ1821C& 2T, {| - |vtnso BFET BUMBLRALTHZD
T, HBNEcEZ,,6>0hH>T,

Wy :={¢ € D) | [[¢¥]lx <6}

EHELL, 9+ WyNDg CE XS, ELT, Wy e THBDT, ¢+ Wy C D(2) Topen TH
5. ¥

(¢+W¢)QDK:¢+(W¢QDK)CE
THB. 5V i=Uyep(o+Wy) EELEV CD(Q)open THH, VNDi =E %3, £oTL
AT
(3). ECD(Q) bounded £ §3. £ E C Dx ERZAVINY hNEGDEFERETY. BIEE TE
BEOKCQIOAYNIFERICDWT, E¢ D 93, $HRLEEREDmM € Z, IZDWT, H3
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om€EE 2, c QDHOT,

o om(Tm) #0 DD
o {z,} 13 Q LTERBAZIFLEV

HOZHEHETES. CNIBROELSICHBMNICHER T 3: 1.72D0L 58IV NT FEEDFQ =
Us1 Ki ZE3. 01, s @m.T1, ..., oy DEBREINTETS. 21,...,2m € K; BB 1 2E3.
E g_/j Dk, &D, %3 pomi1 € E Tsupp(pm) ¢ K; EBD2HDNHSD. € THB 21 € Q\ K;
T omi1(Tma1) #0 EBBDHDHEND. CNZEDREBIFEHTE 3.

ITWcCD) %=

Wi {u € D) )] < L > 1)
EHE<. Wik convex balanced ™20 W TH3. €L T, FEOIAVNI MEE K Cc QICEL
<, Kﬁ{l’m}mzl ‘;ﬁﬁﬂﬁé(\:@%@z—, WNDg € 7, E785. J—XJ::J:D, WepeiRsd. —5
T om ODBDEDS 0, ¢ W THB. DEDERED M € Z4 ICDOVWT, EZ mW THD. hidk
E D' bounded ICFET 3.

BEOETRICALTE, ANV MEEKCQTECDK CD(Q) ERZHDEES. FlE Dy
TH bounded THB. £2T,1.54E&D || -||ny: E— RiEbounded &85,

(4). E C D(R2) %Z bounded closed £93%. (3) &D, HBZAVNIMEEK Cc QD H>T, E C Dk
£7%8%. (2) &D, Eld Dk ®LT bounded closed THB. 1.74H5 ElF D ETIAVNIFT
H3. £>TDOQ) THAVYNI FTHB.

(5). {¢i}2, C D(Q2) Cauchy BT B L, {¢i}°, I&bounded set THB. £>T (3)h5HBAV
NIMEEK CQDH>T, {pi} C Dk &53. (2) D5 Di C D(Q) WEEDHRHENA>TLWBDT,
{pi} l& D £TH Cauchy 5 TH 3. DEDEED N € Z4 ICDWVWT limy m—oo |[om — @nlln =0
AN

(6). D(Q) £Tp; »0&T3. (COBBICHEIERV.) {p;} € D(Q) I& Cauchy FNIHBZ DT,
G)DEHBBZAVNINEEK COQDBHB>T, {pi} CDx B3 . &>TDx ETHp; - 0ER
ZDT, N €ZiiZDWT |lpilly - 0THB. CHIIERD o € Z7 IZDWT, —#RIC D% — 0
CUINRY B.

(7). {pi} € D(Q) Z Cauchy FI&T3. 5)DoHBZAVNIMEEK CQDHB>T, {¢v;} C Dk
L3 . 174 >T, Dy RERTH . (REHEREROBESRDT,) £->TH3 ¢ € Dk
NH>T, Dy £ Ty — p &8B. THNIEDQ) ETH o — p &%8D. £o T TEMIFLWV
INRETHS. 0

MTFDQ) ICIFRIC1.8.4ICEIFBMEr ZANS. 1.8.7 £ D D(Q) IF locally convex complete T
Heine-Borel Property Z3FDffHR Y ~ILZEETH S.

Remark 1.8.9. z € QICDWTev, : D(Q) > CZ eve(p) :=p(z) ELTEDHD &, THNUITERT
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H3. BELBSIEpeDQ) Le>0ICDVWT
W= {f D) |fllo <e}

L HEL Y, CHUSBEATHBD, ova(p+ W) C Blp(x),c) £33, DED ev, it o € D(Q) Tl
THD, p IFEERBRDT, ev, ITEHRTHS.

&7 Dk = Nyeayk V2 (0) ENNVFBDT, $IZ Di € D(Q) I closed TH 3.

Definition 1.8.10. Q C R" ZZETRHRVHAET LT 3. Q LB (distribution) & I3,
B CRREBBRA . DQ) - COIELTHB. TDOEEDZ D'(Q) &KRT.

Proposition 1.8.11. Y & C E£® locally conver ZRfiItBRT MILZERE L, A: D(Q) - Y
= CHEBERCTS. UTIXEETHS.

(a) A IFERE.

(b) AIBER

(c) D(Q) ETp; -0 B3RFUKL, Y ETAp; - 0&RB.
(d) FEOIAVNI FEE K C QIZDWT, Alp, : Dk — Y 1E&EH:.
KO THICCREBHA : DQ) —» CICHLT, ADBERTHEZLIZ, ADERTHEZILL
EMETHD, ZLTEREDIVNI FEE K CQIZDWT, Alp, : Dk —» Y IFEFHETHI L L
FEMET®H 3.

Proof. [(a) = (b)] 1.4.2 &D.

[(b) = (¢)] {¢i}i>1 CD(Q)ZDQ) LTy, - 0B3R5 T3. 1.87L0DHZ2IVNI ME
BKCODH-T, {pi} CDr EHB. 5

Alpy : Dx D) &y

EWS BB/ F7c bounded IC7% 3. Dk 1& 1.7.3 H'5 metrizable THBD T, 1.4.2 H'5 Alp,, IFE
[(c) = ()] {pi} CDxk & p; > 0 BBRINETD. (c) DIREDDS, Alp,(pi) = Ap; = 0TH
3. ChUF 14205 Alp, I3EHRTHBZ L ZRBKT S.

[(d) = (a)] REREF Z &lF, FED convex balanced open setd € U C Y ICDWT, A~1(U) C D(Q)
Mopen ERBZZETHS. £9 A H(U) I convex balanced T0 € A~ (U) &% 3. €L THEER
QAN FEE K CQIZDWT, (d) DIRENS AN U)NDi € 7 £78D. &> T187&D
A=Y U) IE D(Q) £ Topen &% 3. O
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Corollary 1.8.12. a € Z7 ICDWT, D* : D(Q) — D(Q) & D*(p) :=D &3 L, C
niHERTH 3.

Proof. KC Q&N hERL TR, U TORHERAA KD IID.

D(Q) 25 D(Q)

| )

D —— Dg
&2 T DY: D — D hEHRTHD L ZzntEIFBL . FED ¢ € Dk, N € Z, ICDWT,

lelln < lelnia

TH3. D DHHIZ1.82&D {|| - [n}nso CEESTWEDTNR T O

Proposition 1.8.13. A:D(Q) —» C% CIREFHRLT5. UATIIRETHS.

(a) A€ D'(Q), DED A IBEKTHS.

(b) FEOOAVNIFEEK CQIIDVWT, HB3N>0HBC > 0hH-T, FED
¢ € D ICDWT,
[Ap| < Cllelln

DD IID.

Proof. [((b) = (a)] K € QZ N7 EGETS. 1811 DM BRI LI, Alp, : Dk —
D(Q) L CHERE BB THS. TTBHL T Alp, 10 TEETH S L EREIFBL. ]
EDMICHBDESIBRN>0,C>0%2EETD. FED: > 012DV,

S
V={peDxllelr <5}

£9%. 0V CDgopen THD, FED ¢ € VICDOWT |Alp,(p)| <e THB. £o>TA|p, &
ETHD.

(a) = (B)] K C Q%A MERY TS, T3L Alp, : Dk — CHEERTHS. £oT
BBEIN>0EHBBc>0DBoT,

A({peDr | lellv <e}) c{zeCllzf <1}

LB%. TNRERD 0 TBW g € Dk IZDWT, Ay 9)| < 1885, o THEBD ¢ € Di
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IZDWT, ,
M@ < Zlely

£BB. C=2 BV O

Definition 1.8.14. A € D'(Q2) £ 9 3. A Hinite orderZ$FDEIF, "HB N > 0 h'H >
T,EEDAVNIMEE K CQIEDVWT, $H3C > 0DH>T, FED ¢ € D ICDOWVWT,

Al < Cllelly

BEDIID"Z. TNDEDIDR/NDBEREN % A D order £LV5.

Example 1.8.15 (Dirac DBR#). 2 € QICDWT, 5, =D(Q) - C%& 5.(p) := p(x) £T3. 5
I distribution TH 3. BEBRSIFERD ¢ € D(Q) ICDWVT,

102()| = l(2)| < llllo

DD IIDDT, 1.8.13 ' 6hh 3. T5IC I, I finite order Z#FD, order |0 TH 3.
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Chapter 2

BRI » convolution

Notation

e () C R™ : non-empty open subset

e K C Q) : compact subset

e D :={p:Q—=C|peC>®Q), Supp p C K}
D(Q) := Ugcq: ept Prc test function DZER]
peD(), N €Z>pZlDWT,

n
lolly == max{|D%(x)| |z € Q, a € Z%, st. |a| ==Y oy < N}
i=1

Ve C®(), N €Z>y, a €Z, st. la|=a1+ -+ a, < NICDWT,
Py(f) == max{|D*f(z)| | |a]| < N}

Viv == {f € C=(Q) | Pn(f) < &}

Tk : D LOMAAT, (VNI EEDFTRETEDSNZHD.

e (3 : convex balanced 0 € W C D(Q) TH>T, FEDOIAVNIFEEFT K C QIZD2WVWT
Dk NW € 1 £ W h 5783 EETk.

7: BOFTREICL > TEDHSNS D(Q) LDfIHE

D'(Q) :={¢:D(Q) — C | EHRLIFEIR } Doz BRI (distribution) £ W 3.
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IR=TJAEDEEREDER

Borel measure (7KL JLAIE)

Definition 2.0.1. Borel o-f\#%
BR") = o({ BIEA in B"))

EESHD. CCTo({HES in R"}) CIFAIREIOM - B85 - HESDIRETERIN
2EEHEZESY.

p H¥ Borel measure &1, B(R") EICERINICAE, DD u(9) = 0 M OEEMEEZ
FOE®R p: BR") — [0,00] £ T 3.

Lebesgue measure (JLAR—ZAIE)
Borel £87217Tld, RAEZEDHTEVEGHESHWV. X, A b—IILEEP I SITHENA

E£E5OEIDHWIRFAD @ Lebesgue measure (&, Borel o-X#% RIEEIZBI L T5Ef@(L (completion)
LTEONBDELDARERESKICERIND.

38



L NAE m* 2EHTS !

m*(E) := inf{z |I| | E C U I, I LilZF'Eﬁ}
k=1 k=1

(|I] FXEDERE)
2. WR—JOJHESR | £8 E D' Lebesgue measurable TH 3 &I,

m*(A) =m* (AN E) +m"(AN E°) for all A C R"

MEDIIDZ &,
3. COMRIESERR £ EIZ, m(E) :=m*™(E) ZE&Y %,

Definition 2.0.2. Lebesgue measure m |,
m: L — [0, 0]

T, L IFE2T®D Lebesgue measurable £E8% &,

L BRY) 28H, WEIELTRRE (EEE0BHEALLTED) THE.
Borel measure ¥ Lebesgue measure MiEWMILTDED .

I5H Borel measure Lebesgue measure
Borel o-f£2% Lebesgue measurable
EHRI B(R") £8% L
FESHSEMIND NAEDL S
BTk =ND o- R EDRE Carathéodory DF7E THER
—RRICIEZTERT AL 5efm
et | (BEESOWAEESZEFTHVBEENHB) | (BEESOBAIESH A
Lebesgue measure @ Borel E853HBEH Lebesgue measure (&
E3[EA Borel Lebesgue measure Borel measure DFefE{t

TSt ERAE

(X, A) BEZRE T 5.

Definition 2.0.3. v : A — [—o00,+00] DNRDEMZEI-T L E, ST RIE (signed
measure) £ L\D.

1. v(@) =0.
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2. v ISATEMERZIFD | FROEWVCRAAESRTY (B2, ICRHLT

v (U Ek) = v(E)
k=1 k=1
MEDILD, fef2l, MOBELTIFY o2 v(Ep) T+ Y e v(E)” P edb—7A
IEBRE$3. (ZZTat =max(r,0), 2~ = max(—z,0)) THD_ZREL,
+00 — 00 DREFINHBEWCRET D)

(2) ICEALTIE, AEDENTFTERICHEZDZEITEENDHS. DED 400 & —c0 ZRAKFICE
5BVWEIICTB.

EERFEERELTIUATHHS.

e Hahn $f#FEIE | FED signed measure v IZXF L, X (IHES P (EES) ¢ N (&8
£8) ICDETE,
W(E)>0(ECP), v(E)<0(ECN)
e Jordan DREIE | v IFEWCERLIEEAE v+ (EED) € v~ (BE5) ZRAWVWT
+

v=v"'—v

E—RICRINB (v BREWIRBZRBZHD) .

FESMTAEICS T2 RBEIEHRDER
FEEFTRIBIE f > 0 IS LTI, FFERIED & T LFEFRIC

/del/Z:/deVJr—/deV

ELET, IR LBED 0o —c0 EVWSRETICBSBWVEIICTS. 2EDDBCED—HDIA
AHBRTRIINIEES L.

— AR DEAAREE f IcDOWTIE

f:f+_f_’ f+:max(f,0), f_:max(—f,())
EofRL, fA v ICEALTHBESTHB I

/Xf+d1/++/xf+d1/_+/Xf‘du++/xf_du‘<oo

FTHOS5 |f| B v ICEL TR THZI L LT 3.
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CORHEDTT

. + -
/del/_/deV /)(de
HEROEE LTERZINS.

BETABHDOBEE f=u+iv ERE u CER v ZENTNFSHSTAEICEALTRAERCT
BLELTHRDEEET S.

REERTH TS 2 EE

Theorem 2.0.4 (Banach-Steinhaus theorem, —#xBRMEIE). X %Z Banach ZEf (Rl
JIVLZER, T 5ICRRGAMIMERY MLEBETHRY) Y £/ I)LLAZTEHE (ZfETHELTH
W) 93, FCCX,Y) 2 EFSAERRDKEL T %

FERD 2 € X IZDWTsupper [|T(2)|ly < 00 51,

sup ||T|lop = sup sup [|T(z)] :< oo
TeF TEF ||z||<1

TH3. DEVERR/ LD —RRICERTSHS.

DFED, RTLODBERMED S, FRAR2EO—HAEREN VI S.

Definition 2.0.5 (Baire space, 35—%8, 5°4H). X Z{UMEZERIC 7 3.

e X H' Baire space & &, THESDAIEK U, T, & U, hldence B 5IF, N U, B dencel
ERBZEBMOE. AEASVRIELT, TF° =0 tAhZa8EOHESICDOL
T, (UF)°=0t%3. 1

o X WE—HHLIZ, AREDKRES FASZDOATHZEES) DM THTIEED L.

o XNMETHLIK, BE—ETIFBEVI L.

EEN S X H Baire ZRE 1T MEEOETHWVWHESN X ICEWTEZETH D) LFEHE
TH5.

Theorem 2.0.6 (Baire O#IEFEIE, Baire category theorem). X % StfmEEREZEME X 7 ld
BEFRAYNI ENTRARILVTZERETS. OB, X & Baire space THB.
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2.1 Calculus with Distributions

ULTQCcR* EOBRICEALTIIAR=THE dx ZEAND. f:Q - CHEARDEIE, EOEBK
THBERCTS. £ f Hlocally integrable(BFIRITES) ik, FROIAVNIMEEK CQT
AN ERB L, 2FD [ ||f|lde < +o0 T B.

~

Definition 2.1.1. [Rud, 6.11] f : Q@ — C : locally integrable £ 9%. Ay : D(2) - C &
WS ER%Z, 8D ¢ € D(Q)) ICDWVT,

As(p) = /Q f(@)pl) de
CEETS.

TBL, AEOIAVAY MEB K C QIEoWT, Ok = [, |f(2)]de £ L, FEO
0 € D ICDWVWT,

[Ar(@) < [ [f(@)]-[e()]de < |f (@) dx | - max|p(z)] = Cllello
K K zeK

£7%%. &>7T[Rud, Theorem 6.8] £7clE 1.8.13 h'5, Ay € D'(Q) THB. (b o ri&E<
finite order Z ¥ 5 order 0 DFBEKRTH 3. )

.

T, Ap & fE—HT 3.
Remark 2.1.2. u % Borel measure & 7| positive measure TERD IV /NI MEE K C QICD
WTuK) <o &B3HDET3. COKA,:D(Q) - C%

Au(p) = /90 dp.

ELTERTDEIND A, €D(Q) THB. (B> 5L finite order ZH 5 order 0 DEBEI T
H3. ) LEERIC A, & pZRA—HRT 3.

Definition 2.1.3. [Rud, 6.12] o € (Z;)" & A € D'(Q) ICDWT, D*A : D(Q) — C ZfE
BDeeDQ)ICD2WVWT,
(D*A)(p) := (=1 A(DY)

ETBETEERTD. CORDNeD'(Q) TH5.

KB CHEETHD, FEDIVNY FES K C QIZDWT, [Rud, Theorem 6.8] h*5d 3
CERGENEZ, DBH>T, EBD ¢ € Dr IZDVT|A(p)] < Cllgllny HHEDIID. &
THEED o € D ICDWVWT

[(D*A)(p)| = [A(D%)| < ClID¢lIn < Cllpllnv4af-
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ERBDTEERELS.

Remark 2.1.4. fFE®D a,B € Z IZDWT DYDPA = DPA = DPDYA &% 3.

Lemma 2.1.5. [Rud,6.13] f: Q — C %& CN #&®D locally integrable B L §5. T DHF,
FEDac Zi L:OL\T, DaAf = ADuf WD ILD.

Proof. NICKBRNE o= (a1,...,0n) €Z7 Tla| < NZEEJIS. §6£1<i<nT
0417&0 t@%%@f]\%é B:: (al,...,ai—l,...,an) EZ:L_ t—9’-5

eeD(N) T3, Supp I FAVNT FRDT, feoe CNQ) %3, £oT

| (@) 0 do =0,

PVR3. UELD,

_ a T B dp T
0= [Den)edat (D) FEa
0
= Apes(p) + (_1)(67,-%61”) () (2.1.1, 2.1.3)
= Apas(p) +(—1) (6{; D'BAf) (p) (induction hypothesis)
= Apas(p) = (D%Af)(¥) (2.1.4)
EED, Apas(p) = (D¥Af) (@) ERBDTE R, O

Example 2.1.6. [Rud, 6.11] Lem 2.1.5 [—#&®D f TRIED L=\, f & CO(Q) TDAs # Apy
320 =ETS.

Q=(-1,1) L, f:Q=>C%

0 (z<0
3. f IREEMSNT O &b,
d . < /d . Ld B
A (o) -—/def'“’dw—gh% B (mf>@d“5£rﬂo ; <dxf>(pdx_
(REMANAT Lf(z)=0HBBDT)—AT

(;iA > () = — /Q f (;;w) do = — 01 %90 dz = —(p(1) = ¢(0)) = ¢(0)
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DT Au,# LA TBS.

Definition 2.1.7. [Rud, 6.15] A € D'(Q), f € C®°(Q) ICDWT, fA: D(Q) —» C#%
(fA) (@) :=A(fo) LEET B.

Lemma 2.1.8. [Rud,6.15] A € D'(Q), f € C®(Q) ICDWT, fFAeD'(Q) THS.

.

CCT(fM(p) :=A(fp) THS.

Proof. A € D'(Q) 72D T, [Rud, Thm 6.8] &O, FEODIAVNI FEE K C Q IZD2VWTHDB
C>0YNeZ, BH->T,
IA(@)] < Cllelln

MEED p € Dk THDIID. J:O_C, FED p €Dk ‘:OL\_C, ng € Dk 7’&:0)—(,
IA(fo)l < Cllfelly = Cmax{|[D*(fe)(z)| | € K, |a] < N}.

£72%. CCT Leibniz rule Ic&k 2T,

D(fe)= > Curar-D¥f-D*¢ (3Cuar € Lz0).

o' +al'=a

EMTB.(Co o BFTIEFEATWVBDHD) ¢ :=max{Cy o | |/ + | < N} ETBE. FED
reQ,acZl Tla] < NBHDIZDOWT

’Da(f(pxx)‘ - Z Ca’,a”Da/f(x) Da,/()p(x)

a'+a''=a

<C'- Y DY @) llelly

o' +a'=a

<C' - (N+1)"-max{|D” f(z)| |z € K, [o/| < N} - [lollv
Ko THBZM>0DH>T, FED ¢ € Dk ICDWVWT

IA(fo)l < Cllfelln < CM|lpln

¥ 7%%. [Rud, Thm 6.8] B'5 fA € D'(Q) TH 3. O

[ Lemma 2.1.9. [Rud,6.15] A € D'(Q), f € C®°(Q) £TB. g1,90 € C°(Q), a € ZT} ICD
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WwT,
D (9192 Z Cal OlQD ! 1Da292

a1tas=a

THDLTD. CCTChay a1 & ICDBHKETIERBTHS. OB

DUfA) = D Cayay (D f)- (D*?A)

a1tas=«a

HEEDIID.

Proof. 4 eR"ICDWT, W -7 = wz1+ - +upan, £553. T3,
DY (67?) — 70167-?

Y3 ZZTUY = ultudr THBD. S 8%16“19”14'“*“"“ = uleﬁ'7 HEODRLEIGT
nEhns. £-T
DT 7Y = 3 gD T L T
BLa
CiRB.

HE] MIZIE, n =1 DEFIC, g—i (€% . V%) = D2eU® . VT 4 2De . DeV® + U . D2eVT X733 T

EDS. COPICEVTIE, Copp iECog=1, Cri1=2 Coa=1th3.)UELDIDH
ICBWTIE,

(@+y)* =) Cappz® Py’
B<a

WS ZHRFICH LT, Capp = (3) €43, O
MELD
i@ = (U4 (-7+ )"

—ZC’a 3,8 V" —B. v+u)

B<a

_ZCa 537" szcﬂ DBl g =g
B v<B

_ Z D 5@y % Z Nele,_ 5,608~
y<a v<B<La
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UELD,
—1 |O‘|7 =
Z (_1)|B|Ca—6,ﬁcﬂ—%v = {( ) !

r<p<a 0, otherwise

£7%%. &>TDP (oD Pf) IC Leibnitz rule 2> T,

D (D)PC 5D (e D*Pf) =3 (=1)P1Ca s D Cpyry(DI@)(D*S)

Bl Ba y<BLa
= Z Z (_1)\5|Ca_67/305_%7(D790)(Da—Wf)
y<ay<p<La

= (-1)l|(D*y) f
3. £oT
DY(fA)(p) = (—1)l*I(fA) (DY) = (=1)*IA(f - D¥p) = A((—1)l*lf - D)

= Z(_l)lﬁlca_ﬁﬂj\(pﬁ((p ) Da—ﬁf))

B<a

=Y Capp(D°A) (- D)

BLa

=Y Capp [(D*PF)- (DPN)] ()

BLla

DO WR T O

2.2 Weak *-topology

MTFI& [Rud, 3.8-3.14] DAZR.

Lemma 2.2.1. X Z&&, 7 2UBZEE Y, ANOER [ X - Y; DBT (BTHW)&KE
;3 Y

Ti= {U () 7' Vip)
icl feF

ETBE, 7IIMERD f € F NEREBBRBD X LOMUBETHS.

Vip C Yy open, BIRMED f ZFRWVWT Vi =Y; }

fIETHZL. o=f12)N ﬂgifg_l(Yg) €T X =jesr f71(Yy) € 7. £7= 7 IF unionu T
FALTW3.
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BELD,i=1,21220WTW; :=Uj.c;,Njer [ (Vip) €7 ELISRE, WinWs € 7 ZREIE
Ru.

Wi NWs = ( U N f1<vj1,f>> N ( U N fl(ij,f))
J

nenh fesz jo€ly fEF

- U (ﬂ (fl(vjl,f)mfl(vjmf))) eT

ji€h,jo€lz \ feF

KoTr I X DHETH 3.

[f 8RB BZL] ERD f € 7 LEBORERV C Yy IZ2WT, (V) = fFAY(V)n
Nor g Y, €T &D fIFEHE

BEABCL] ¢ & X OHAET, £TO f e F BB B3HDL TS5, COB f~(V) e &
5%, rid Tfc 7 HOMEAV C Y L LEED (V) ie5) TERSNTWEDT, 7/ 5 7
B, XoTrHB—FENTL. O

Definition 2.2.2. 2.2.1 ICHF3 7 Z weak topology on X induced by .FX°, .F -topology of
X &>,

AXSER C S B R ERS. UTF, X £ CAY MLER, 7 #HAER X - COLTE
BHEYTE. (bB3ARTHEL)

Theorem 2.2.3. [Rud, Thm3.10] X & C-~NY MLEFEL, X' ZRBEER X - CDO#R
TEEHEL TS, (DFD'RY MLER"OWNHZER {f : X — C|f I3HRE } OWBHES.)
X' B separating, DEDFEED 2 Ay X ICDOWT, HB f e X' BH>T f(x) # f(y) T
HB3ERETS.

7' % 2.2.2\C8F 3 X' -topology £FB. DEF (X, 1) W& locally conver UMENRZT +JLZER
T, X (&R MLZEROMRZER {f : X — C|f IFHREHIDER } £ 825 DHFE
£93.

Proof. (1).(X,7') I&1locally convex fifHRZ ~ILZEER D & &R Y. Cld Hausdorff & D, (X, 77)
BHES. £oTT. (T CIC separating ZfES.) IHIC 7 IEFFITARE, DEDFEEDOW € 7/,
2 € XITDWT, Whaer ThE. SNBW = Uyer (Npex: /7 (Vo)) ETBE, W 40 =

Urer (Nyex: £/ (Vs g + f(2))) B30T
TV, ... fie X,Vr;eRg& L

Vi={ze X ||filzx)| <ry, 1 <i<k} (2.2.1)
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EHELE, CDESBV IeB2ED 7/ D local base &% 3. V & convex balanced DT, (X, ')
(& locally convex.

RICBLEDNERADCEERS. LOLSBVICDVWT, 3V+IV CVTHSE. T: X xX > X
ZT(x,y):—z+y I3, TAV x3V)CV THSB. V 2IF 0D local base L HZDT, T
NIETH (0,0) e X TEHRTH DL ZBERTS. 7/ OFITAEMLD TITERELES.
ANT—EBHERBRDZIcZRS. S:Cx X - X%&Z S(a,2) =ax &$3. ar € U L%
UerT22%. $35L(221) 5DV T,V +azx CcU DD

Vi={ze X ||filz)| <rl, 1 <i<K}
EBBODNEETS. 2L, AEEV er LI eRy BB TRZHELTLIICENS.

o EED1<i<k EVyec V' IZDWT, |al|fily) < 4.
o c-max{|f;(z)| |z € V", 1<i <K} <%

SV i=(a—ca+e)x (V' +2) LHL, Cx X OBEATHS. T5IC(0,2) e VTHO, fE
B (B,y) eVE1IZi<KIZDWT,

/ /
r, ’

[£i(By = a)] < 18— allfiw)| + ol lfily — )| < F + 5 =7}

£oT, S(V)cVCcUlL%3. CnUESH (a,z) TERTHDCEZRIKTSD. LoTSILE
e, U ELD (X, 7) I& locally convex fUMENRZT ~JLZER.

(2). X' ISNZEREA B e ERY. X* % (X, 7) OFNZER, 20 {f : (X,7) — C|f IZGEHDEH )
93 "ICIE X =X'"TH?3. 221 &0, FEBD fc X' IZ2DOVWT, fITEHKRTHD. &o
TX*D> X' TH3.

BOEUZTZRT. ge X* LT3, gldERBDT,g: X > CDO0e X TOEFMENDS,

V"'={z¢€ X |l|gj(z)| <tjfor1<j<{(}

EMFBRV'TH>TEED 2 VIZDOWT, g(2)| < 1 EBRBZDDDHEFEET ..

CDBF N, Ker(g;) C Ker(g) THB. THERT 2 € (), Ker(g;) £ T BERD a € Rog 2D
WTC,az e V' THBDT, V' DERDADS alg(z)] = |g(az)| <1 &%BB. alFEREST=DT,
g(z)=0%3.

T, 7n: X = C Z )= (q1(n),...,0(2)) £TB. FED 7(2) = 7(2)) &1RB Vz, 2/ € X IC
2UWT, ﬂ§:1 Ker(g;) C Ker(g) BDT, g(z) = g(z') €% 3. X/Ker(r) 2 Im(r) ZEEIT DL, g
I& Im(m) £ED CADREER g #5FETS. Im(r) CC'BDT, u; : Ct - C%2F i BEHOHE
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9B, Hday,..., 0 cCHHHT,

L
qg= Z ajuj
j=1
EhNIB. &2 T, g=For=3"_1a;g € X EHD X* C X' tBB. UELD X*=X'Th
3. O

Definition 2.2.4. [Rud, 3.14] X ZMEAXRY MILEBC L, X* ZZONZEM, DF D
X*i={f: X > C|f IIRENDOEF } £T5. 1€ X IZDWVWT,

evy : X* > C  frevg(f) = f(x)

Y93 CHICED X s {ev, e X |z e X} C{F: X* = C|F I3§E } L E5BEHHE
5N%. MECDERICE>TX C{F: X* > CIFIMGE ) tA—8%95. ZORF X
| separating THB.(f g€ X* &, D2 € X BH>T f(x) # g(x) LEMEICER).

2231C&D X*IZIFMIME T T, (X5 7)* = X LRBZDDOHFEINS. ZOMEE X* D
weak x-topology & 5. 2.2.312& D, (X*,7) & locally convex iIHERT ~ILZEBTHS.

[EB] X - {evy € X |z € X} BEHTIIBW. BIRIZ0<p <1 LD X = LP((0,1) I
LT, X*={0} &A% BOTX w{ev, € X |z € X} C{F: X* = C|FI3FE } HEHT
IFR0V. (X C{F: X* - C|F 338 } tA—HRLTWVW3H, CNIEBEREICIFEETIFEW)

X H¥locally convex iIiER T ML TH 3% 51, Hahn-Banach OFEEHD S EHHMEHNE X 3. L
DHE convex TIXZRLY.

Definition 2.2.5. [Rud, 6.16] 2.2.4 ® & 3|, BEMDZER D'(Q) IC1F weak *-topology
ZANS. CNUCE - T, D(Q) I& locally convex BN Y ~ILZERE L 7% D FDOXWRZEREH
D(Q) &%B.

L& D'(Q2) 121 weak *-topology Z AN TE X 3.
Remark 2.2.6. [Rud, 6.16] {A;}3°, ZEBEMDIE T3, CDE, weak x-topology T hm A=A
THDEIE, EFED p € D(Q)) ICDWVT, lim; 00 Ai(p) = Alp) EBDB K Kﬂﬁfi@%

Theorem 2.2.7. [Rud, Thm6.17] {A;}32, BEEDIE L, FED ¢ € D(Q) ICDWVWT, &
BR 1im; 00 Ai(0) BNC DEE L THEET D KT&E?'%
CDCE

A:D(Q) = C, A(p):= lim A;(p)

1—>00

CEDBE, CNRESTHS (DED, AcD(Q) THB). SHICEBDa € Z7 12DV
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T, D'(Q) £ETlim; oo D*A; = DA HRED IID.

FEAAIE Banach-Steinhaus OEIE (—BRMEDEIE) ZELS.

Proof. ADNCHREISBESH. &o T, AW EH%ZRT. TNICIE [Rud, Thm 6.6) LU 1.8.11 H
5, FEDIVNI FEE K C QICDWT, Alp, : Dk — CHEFEZREIEEV. CHIFEED
£>0ICDWVWT, %3 opend € V C Di T Alp, (V) C B(0,e) £ B3 HDHFET 3 L 2Rtd
Bu\.

€>0&93. open ball B(0,e) C CICDWT,
E:=()A;71(B(0,5)).
=1

ZEZB. EED p € D ICDWT, limyo0 Ai() BEFETBDT, {Ai(p)}2, I& bounded. &>
THZ2mel BH>T, EBD i Z ICDWVWT, Ai(p) € mB(0,5) = B(0,%2)) £78%. A; 1F
IREADT, EBD i€ Zy ICDWT, g € m(A;1(B(0,5)) THB. UELD,

DK = [j mE
m=1

Ths.

_ C T Di |35E(mEEBEZERI % D T, Baire DEETFEIED S Baire ZEE THD. DD EIFHRZH
D.AHNR2CcE EEFDMABEV CEZ LS. 2LV —29 I 0DRAETHS. K> TEED
vEV —2g CERBDi € Z, IZDWT, v+ 20,20 € ERDT,

|A; ()] = [Ai(v 4+ 20 — x0)| < |Ai(v+ x0)| + |Ai(x0)] < %e <e

&oT, [AW)] = limj o0 [Ai(v)| < e THB. TNKD, V=V -0 &HBLLE, 0V CDg T
Alp (V) C B(0,e) £73%. 2 T0€ D TEFETHS.

D DFATRENMEEE ST, Alp, HBEFTHD. A D'(Q) THB. F722.1.3D'5 limy_,o00 DA, =
DA TH 5. O

Theorem 2.2.8. [Rud, Thm6.18] D'() L£T lim; oAy = A DD, C®(Q) £T
lim; 400 g; = g in C°(Q) CIRETS. COLEITD(Q) £ETlim;y00 giA; = gA THB.

Proof. "3 2 &ld, MEED ¢ € D(Q) IZDWVWT, lim; 00(g:A:) (@) = (gA)(9)1 TdH .

peD) ZBIEL, K :==Suppp &£353. KIFOAYNIETHB. e c Rog&TBE, RHOED
3.
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e Thm 2.2.7 LELENS, &% open 0 € V C D h'&HB 2T, Ay(V) C B(0,5) THS.

o EBD i€ Z IZ2WT, gip € Dk THB. &2 Tlimisoo gip = g9 THB. TN&D >0
ICDWT, gip—gp eV THB.

o lim; oo Ay = A KD, lim; 500 Ai(gp) = Agp), £2Ti > 0ICDWVWT|Ai(g99) — Algp)| < 5.
TH3.

MELDINSZEDET,

[(giAi)(p) — (gA) ()] = [Ai(gip) — Agp)| < [Ai(gip) — Ai(gp)| + [Ai(gp) — Algp)| < 5§+ § =&

LK THEED ¢ € D(O) IZDWVT, lim; 00 (giAi) () = (gA)(p) EED WX Tz, O

2.3 Localization

Definition 2.3.1. [Rud, Def 6.19] A1,Ay € D'(Q) &, W C Q open ICDWT,
”Al = A2 in W”%{f%ﬁ@ p e D(W) ‘:’DL\T, Al(tp) = AQ((,O) Thdrr LTE@%

Example 2.3.2. W C R" % open, f:%& Q _E®D FBFAAFES (locally integrable) B8E & 3 3.

() Ay =0in W THBZLIF, HEED g e DW)IZDWT, Ap(p) = [, fode =01 LFHET
H3. NI flw =0 almost everywhere L [EETH 3.
(2) 1 (Borel) measure £9%. A, = 0in W THBILIF, MEED ¢ € D(W)IZDWVWT,

Au(p) = [y pdp =01 LEMETHSD. CHUIFERD Borel setE C W ICDWT u(E) =0 C[EHE
THB.

Theorem 2.3.3. [Rud, Thm6.20] I Z R" OREEHET Uy U =Q ERB2DHDET S.
CDEE test function DI {1);}3°, THOTREFBTHDOHDHS.
(a) 3 U; e T H'&H > T, Suppv; C U;.
(b) EED 2 € QICDWT, z € Suppy; BB i€ Zy IFBRMET Y 2, ¢i(z) =1T
H5.
(c) FROOAVNIV MEE K CQIZDOWT, HBm e Zy ¥ openW D K HH>T, =
Di>mICDWVWT |y =0.

Proof. P, Py,....P;,... ZQ LOBEHRCTS. FED P IZ2WT, r; € Qs TB(P,r)CU
EBBU e ITHFEETEE DU Z—DOEETS. FRDic Z ICDWVWT OB ; : Q — [0,1]
T,B(P, %) £ET i =1 DD B(Pi,1r) DAT p; =0 EBBZDHDHEFET 3.

T 1= @1, Yiv1 = @ir1 - [ (1= op) EFT 3. {4)2, B (a), (b), (c) BT L%
Y.
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()| FEBD i € Z, I2DWVWT, 3 U €' TH>T, Suppy; C B(P,r;) CU &7253.
[(c)] BBD z € B(P,, ) ICDWT, ¢i(z) =1 THBDT, (> i B5IE

/-1

Ye(x) = po(x) [[(1 = pr(@)) = 0.

k=1
FOTEBDIVNIMERK CQICDWT, B meZy BH>T, W=, B(P, %) D K.
EH3. E-oTLEICED, FBD i > mIZDWT, ¢|lw = 0.
(b)] £E&D, 32 ¢i(z) IFBRMTH . EFED (ICDWT,

L

¢
Zﬂh‘:l—H(l—%’)

i=1 i=1
THBLZERT. (=1 DrEIRELL, —OESE

/-1 £—1 /-1

L
sz H 1_901 +‘P€H 1_901)_1_(1_9001_[(1_902')':l_H(l_SOi)'

i=1 i=1 i=1 =1

&DEXB. UELDABD 2 € QICDWT, 2 € B(P, %) EB3 ( #EETHE, j > (B51E
Yi(x) =0 TBBLY, j=1551E ¢j(z) =0 THBC v &b,

L

o0 l
S @) = S (@) + w0 = 1- [[(1 - i) = 1.
i=1 =1

> i=1

EB%. LoTLWR . O

Theorem 2.3.4. [Rud, Thm6.21] T & R" OBEEHET Uy, U =QEBBZDDETS.
FEDO W T IZDWT, 3 Ay C D' (W) BHo>T, sRDEOERE TWnW £ o &
SIE Aw = Ay in WNW'1 ZFilcdEd 3.

CDOEZTAeD(QQDR—DFELT EROW e TIZDWT A=Ay in W EB3.

Proof. Theorem 2.3.31C& D, 1 DAE {y;}5°, BN D. 2.33(a) £D, FED i € Zy ICDWVT,
H3dW; eI’ T, Suppyy; C W; Kﬁ%%@%lﬁlm?’%. A:DQ)—-C%

= Awi(pp).
i=1

EEERTD. 23.3(c) &, TNIFARNTHS. &>T A ld well-defined B D CHRETH 3.
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Claim 2.3.5. A IEHTH . FHICA CD'(Q).

Proof. [Rud, Thm 6.6], 1.8.11 & D, lim; 00 p; = 0 3T {0,122, ICDWT, im0 A(ps) = 0
ZREIERL. [Rud, Thm 6.5], 1.8.7 &0, AYNI FEEIK C Q T, {pi}3°, C Dk B2 R
DN € Zy \DWTlimy joo [l@i — ¢jllnv = 0 ZIRE L TRUL.

2.3.3(c) &0, % m € Z+( T,
Algi) = Aw, (i)
j=1
%%, 2T, ERD jICDWT it — 0 THBDT, [Rud, Thm 6.6], 1.8.11 B SERD j I
DWT, Aw, (pithj) = 0 B, THUZ, limjoo A(p;) = 0 ZEBEKY B & o TEHL

[fRE] T IZDWT ph; — 01 ICDWT. K := Supp v (&> /NT bARDT, Supp pith; € KNK;
t@% J:’)_CEHT%: DK X 'DK]. — DKij tii@fﬁ@@’c, DKQK]- J:T (Piwj — 0 2:73:5 CTLH:
D(W]) LT (pl‘lbj —0&R%. O

STEEDOW e TIZDOWTC, A=Ay inWZRY. o € DW) %3 $H3meZy T
Suppp C U, W, EBBDDZEETS. T2L Alp) = >t Aw,(eys) THB. £oT
AW:AW¢ inWnw,; T&Bé:(\:t’\B,

= ZAWZ(@¢Z) = ZAW(SMZJ@) = Aw ().
=1 =1

EB%. LoTLWR L.

ADE—LRIEZRT. BLAN eD(Q) T,HEEOW eI TA =Ay n W THBLT3. §%
EEED p e D(Q) IZDWT,

Alp) = Zm ZA (i) = > Aw, (o) = Ap).
=1

=1

£7%%%. CCTLIRBERMICEETS. UELD AN =A.TH3. O

2.4 Supports of Distributions

Definition 2.4.1. [Rud, Def 6.22] A € D'(Q2), W C Q open £ ¥ 3. “A vanishes in W”
ZA=0inWULTEERTS. (DFED, FED e DW)ICDWVWTA(p)=0&WSZ k)
ETBICV :=Ux vanishes in w W- €L T, support of A Z Q\V ELTEET . .
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Example 2.4.2. f:Q — CEHE TR L, Ex 2.3.2(1) &O, FED W C Q open IZDWT
Ay =0in W <= f|lw = 0 almost everywhere <= f|lw =0.

TdH3DT. support Ay = Supp f E&5B.

__ g (e - 1 (z€Q) .

CCTf D EHGEIIBETHS. AIZIFf R—-CZ f(x) = 0 (2¢Q) IEAf=0inR &D
x

SuppAr =@ ZH Supp f =R TH 3.

Theorem 2.4.3. [Rud, Thm6.23] A € D'(Q) B2, W = Up vanishes in o @W- &9 D. D
EE A vanishes on W. DED W 13 A DER D RADHEETHS.

B IR AU 2.4.3(sheaf condition) 5 TH LA S.
Proof. T: ZHEE wCQ Tw ETANERDDODERTETS. . §HE TICHRELIE1IDS

Bl {y;}2, BEIND. £25T233(c) &0, ERD 0 € D(Q) ICDWVWT, p=>2 i IFBRFT
HB. é/‘%é w; € F?b“?f)’)'(, gowi S D(wz) T%é@f,

M@=§:Mwm=0

C73. Ko 7T, A vanishes in W TH 3. O

Theorem 2.4.4. [Rud, Thm6.24] A € D'(Q). Sp := SuppA. TDOLEIRMEDILD.

(a) FBD ¢ € D(Q) ICDWVWT, Suppp NSy =T B5IE, pA=0TH3B.

(b) SA =2 BHIEA=0

(€) eC®O) TS, CVCQUBBMESY LTy =1 LBEZHDICOVNT, YA = A,

(d) Sy € QWA VNT bR BIE, A IE finite order 3D, D&EDHS C € Ry &
N € Zoo BB >T, FEBD ¢ € D(Q) IZ2WT, [A(9)| < Cllglly £53. ZLT, A
& C=(Q) LOEFHREEBIC—RICHEERT 5.

Proof. [(a)] W :=Q\ S £9%. 24.3D'5, ©A vanishes in W THB. § W' :=Q\ Suppy &
BLINIIAESTHD, ¢l =0 THB. &2T, A vanishes in Wd#&dH 3.

CNED Uoh vanishes inw @ 2 WNW = QTHBDT. 2435, oA vanishes in Q THS. 2
ED, pA=0.

[(b)] 2.4.3 DNBHES.
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[(c)lg Z Q DFMERETS. ¢ — 1o 1dF Sy €D 5%\ support Z3HFD. Lo T (a) H'5,
YA =1gA = A &3,

[(d)]Sa AYNT hET3B. 233(c) 5, BB p € D(Q) TH>T, Im(y) C [0,1] D lg, =1
ERBHDHHB. K :=Suppy £HL. K DS\ TH3.

[Rud, Thm 6.8] £7z13 1.8.13 05, D N € Z>o £ 3C € Ry BH>T, FED ¢ € Dk IZD
W<
IA(@)| < Cllgllv

TH3. £ C' € Ry THED ¢ € D) IZDWVWT, |[Yelly < Clelly 53, MELD
2.4.4(c) B5
IA(P)] = (WA ()] = [AYyp)] < Cllvplln < CCl¢lln
& o T, A |& finite order TdH 3.
ITA:C®Q)=C % )
A(f) =A@f) (f e CF(Q).
ELTEETD. f D) ABSIX, 2.44(c) BH

A(f) = A f) = (0M)(f) = A(S)

Lo TAIFADIEETHS. ELTAFCIEETHS.

Hrig A PHEFZTREIZRL. [Rud, Thm 1.32] £721E 1.74 H'5 C(Q) |FEBLAETRER D T,
M — 0 &5, A(f;) — 01 ZREBIERW. 1.7.3D05, 8D o € 27 IZ2WT, QDI /XY k
EE5E—RICDYf; -0 THBL>Thd C, B> T

ID(Wf) (@) =] Y DY) D fi(x)| < Call¥]lja) - max{| D fi(2)| | ' < a,x € K}

o' +a'=a

7%, CCTK :=Supp(v)) TH3. o T, FED N€Z, ICDOV\WTHD Cy BH>T
[ fill N < Cn max{|D*fi(x)] : |a| < N,z € K}.

THB. K ETD; - 0 THEDT, FED N € Z, I22WT, limy oo [0 filx = 0 TH3.
EoT, 0f; —» 0. THB. [Rud, Thm 6.6] &0, A IBEHELEDOT, AWf;) — 0853, &oT
A(f) = Awf) — 0. THD A BEHTHB.

HLIIHE—MDHTHD. A% ADIRETS. FEOIV /T MES K' € QIZDWT, 2.3.3(c)
KDHBY € D) TY | =18R2HDHHZ. K>TEED f € C®(Q) ICDWTyYf € D)
WD f=yfon KTHB. D(Q) C C°(Q) Id dence TH D,

A—AN:C®0Q) = C fr A(f) = N(f)

IEHRDT, (A—A)~1(0) IIEAEART DQ) 28T, £2T, (A - A)"1(0) = C®(Q), THO
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A=A O

Lemma 2.4.5. [Rud, Lem3.9] X & C EDART MLZER, A, Aq,..., A, ZRFEKC T3
CDEEUTIFFEE

1. % T1,...,Tn € CTH-oTA= Z?:lriAi-

2. BB r eR 0 BH>T, FED 2 € X ICDWVT, |A(x)| < rmax;<, {|Ai(2)]}-

3. Ker(A) C (N, Ker(A).

LFICALTIEHEZARETHRL.

Proof. (1) = (2) &7 :=n-max;<, |r;] ETHUTLL. (2) = (3) IZEA.

B) = (1)ZmRT. 7:=(A,...,A,) : X - C", DFD 7(x) := (A1(2),...,Ap(x) &F
3. 3) &b, n(x) = n(y) BB, A(z) = Ay) THB. &2 T 7id Im(r) C C" LDIFHEEEK
A:Im(ﬂ) S ChRBFETS. Lo THBr1,...,1 BH>T, A=riz1+ - +rpzn EDNTB. (C
CT21,.. 2y I C" DEEZEHTHS.) UELD, A = Aom=riAy+ - +r,A, ERDWVZ
1c. O

Theorem 2.4.6. [Rud, Thm6.25] A € D'(Q) &L, pe QICDWVWTH, € D'(Q) Z dp(p) :
o(p) ELTEERTS. SuppA = {p} ™D A |F orderN ZHFDERETSD. DL
A=Y ey CaD8, EPNIB &S] C, € CHEHET B

BICERD p e QICDWT, > laj<n CaD0p DD distribution DY R—KE p H @ T
H3. (BEIEC,=0DRDOHAICEK D).

(it

Proof. HIC... DEBZIFEAS D, RYIDEDZTRT .

p=0cQrLTRBW. TEEDa,la| < NIZDWTD%(0) =0,%3 ¢ c DQ)ICDVT,
Ap)=0TH31 CrEFHIZRV. BERSIE, DY%(0) = (D) (¢) BDT, HLINHED
ITUE, Ker(A) C <y Ker(D¥o) THBZDT, 2.4.5 B 5D ILD.

MERD a,|a] <K NIZDWT DY%(0) =01 £%% e DQ) ZEETS. FED neRopllD
WT, HBecRgDdHoT,

max{|D%(z)| : |a| = N,z € K} <.

L7%%. CCC K:=B(0,e) THD
O, FED r € K IZCDWT,

|D%p()| < N1l |z Nled, (2.4.1)
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BRDIDC LERT. alcdkd (BTHAAD) RINE o = N DIBEE ) DEBLD. —HIC
x=(r1,...,2y) € KICDOWT,
D%p(z) = D%p(x1,...,xy) — D%p(z1,...,2p-1,0)
+ D% (x1,...,2p-1,0) — D%p(x1,...,Tn—2,0,0)
+ -+ D%(21,0,...,0) — DY(0,...,0)

Ti
_Z/ 7Da xl,...,xi_l,ti,O,...,O)dti.

THZDT, ThEAWT,

noorlwl
|Dag0(ﬂf)’ < Z/ nnN*(‘a|+1)|$|N*(‘a|+1) dt;.
=170
= N =UeHD | V=D (|2q | 4 - 4 |z])

:SnnN;qM+nLMN;UM+n(nVQ§:iffI;%)

_ nnN—|a\ ’CC|N_‘Q|.

&oT(24.1)HWVZR Tz,
éT¢€1MW)T¢E&éElbﬁuﬂanwﬂT¢uzot@5%®%té.%LT,E%@

0<7<1ICDWT, ¢ € DR™) Z () :=(%) EEETS. COB, HBc >0 C=C(n,N)
BH>T, FEFEDO<r<elcDWVWT,

[relln < nCllelln (2.4.2)

THBLZTS.
“IEEENS
D% (Yr)(z anﬁ rla | 18] (D Bl/})( ) (Dﬁcp)(x)

B<La

THD. r<eclddE, Supprp C B(0,r) CK THBLISFRT DL

1
max [ D7 (140) () gqmw max (|D*(5)] - [DPp(a)])
1

max |Da751/1(%)\ | DP ()]
)

P18l e B o

1
<C <lyrﬁ o N=lel | N=lal . )
v dnax max ([DTER(E)] T Tl —18]

<G max (ID* P (2)| -9 ()N 191

<nC DBy
nwlg%%g\ Byp(2)]
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MELD (24.2) WX Te. =75 Aldorder N ZHDDT, % C'H'dH> T, FED ¢ € Dy
ICDWT
AP < Cllellv

TH?3. 2T EBDe< 1Y ¢ €Dy lCDVWT|A(Y)] < ¢ ||v. THS.
UEDEREFZLHBZERNDODB: FED > 012DV, e € Ry BB DT,
max{|D%(x)| : |a] = N,z € K} <.

£%%. CTT K :=B(0,e) THBELT, nICEBBWVWC,C'HH>T

[A(@)] = [A(hro)] < Iyl < nCClglly-

THB. CC||n. 10 IC&BBEVDT, [A(p)| =0 THSB. £oTA(p) =0. £1H3. O

2.5 Distributions as Derivatives

Theorem 2.5.1. [Rud, Thm3.2] X RARZ MLZERM, M c X BHEME L TREZRE
g5.

e % mapp: X - R Tp(z+y) <p(z)+ply) &p(te) =tp(x). (¥t >0) ERXBHD
PEETS. (CHU plx) =0 =0 DMHB L semi-norm)
o HBIWMEEB/Rf: M >R T, 2D 2 e MICEALT f(z) < p(z).

CORBHBZA: X >R CVWSIBRERT Ay = f D OEED 2 € X ITDOVWTUT R
THONEET S

—p(—x) < A(x) < p().

CDERICEWVWT pld seminorm THS THRLV. L2 Tp(r) <0 BRBZ3FNH->THRL.

Proof.
X' CX; X' OM ERZDEHLER.
S = {(X',A') | N X' - R EBIPEERTN |y = f DD }
—p(—') < N (/) <p(a/) (V' € X') £BBHDNDH 3.
S IClERF <" %=

(X1,A1) < (X2,A9) <= X| C X} DD Aglx, = A4,
YLTANB Y, S IIRNNESICHD, Zorn DREL D, #8ATT (X,A) H'H 3.
Lo TRDEREZTEIZRL.
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Claim 2.5.2. X = X.

X#£X. 2L,yeX\X%2r3. COBEED 2,4/ € X. ICBWVT,
A(z) +A@) = Az +2) < pla +2') < ple —y) +p(@’ +y)

TH3. 2T, Aa) —plz—y) <pa’ +y)—A). THBDT, o/ ZEETNUL, £D sup H'F
ET5. )
a:=sup{A(z) —p(z —y) | x € X}

rEL EED 2,2 € X IZDWT,

Az) —px —y) <a < pa +y) — A

SX =X+Ry B2, N: X - R; N(a+ty):=Ax)+te. £T3. COBF A : X' — R 138
BERTN|y=fTHD. IHI, FEDz+tge X' IZDWVWT,

o t=0H5E AN (z) =Ax) < plz+ ty).

o t>0%BlFa<plx+y) —Alx)IZFBELT
N(z+ty) = Mz) + ta = t(A(2z) + ) < tp(La +y) = p(z + ty).
e t<0BRSIE t=—|t|, ’DA®)—px—y) <at3EELT,
N(@ = [tly) = [11(A(f2) — ) < [tp(hz — ) = plz +ty).

UELD ERBD 2 +ty € X' IZDWT, Nz +tg) < p(x +1g) TBBDT, (X', L) € S HD
(X, A) = (X,A) THZ. LDL, X' # X BOT, Thid X, A) PMBRTICFET S, &oT

X =X. U

Theorem 2.5.3. [Rud, Thm6.26] A € D'(Q)HD KCcQAVNI T3, COBHD
f:Q— CERERY acZl BH>T, FED ¢ € Dk ICDWT,

Alp) = (~1)l /Q f- (Do) dx

BHEED o IZDWVWTIFE, [Rud, Thmb6.8] ICK>2T#HB C > 0,N € Z>o T A(p) < Ollplln (Vo €
Dg) C83bDHFET DD, EONZE>TETCa=(N+2,...,.N+2) LEDHS.

Proof. Q :={(z1,...,7,) ER" |0 < x; <1forVi}, £&%. 0€ QE LTRLW. FLRT—ILE
BUTK C (-1, £ LTBL.
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KEFFBBLTK CQ L35 ZLTK ¢ (-4, )" HDK 4(0,...,0) ZIRET 3.
Ti=g-g2 g ELERD y = (y1,...,yn) € Q, IKDWT,

Qy) == [0,11] x [0,y2] x -+ x [0, yn]

£9%. FED ¢ € Dg C DR & 2 = (21,...,7,) € Q, ICDVWTFHEOEELDH S
a€ (0,1)PH>T

O(T1y ey Ty ooy ) — (21, ..., 0,00 2y)

()| = )
< o(x1, .y Ty ey y) — (1, ..., 0,000 Tp)
B IZ’—O
0
= 8xig0(x1,...,axi,...,xn)
8%, £oT
< 0 ; 5.
max ()| _gleag\axiw(w)\ (Vi) (2.5.1)
T
w(y)z/ dex:T</ godx) (2.5.2)
Qy) Q)

[Rud, Thm 6.8] D %3 C >0 ¥ N € Zso H'$>T
[A(0) < Cllelln  (Vp € D).

THB. 2T (251) & (252) &b

AP <Cllely < Comax|TVe)@)] = Comax| [ TV ds
(2.5.1) zeQ vEQR 1JQ(y)

<C- max/ |TN | dz < C/ TN | d.
veQ JQw) Q

&£oT
IA(g)| < C / (TN+| da (2.5.3)
Q

TH3. (252)H5 TV . D — Dk IFEEF. £>TIm(TV) C D LIZHEVWT, RE
B AL = Ao (TVTH)™L i Im(TV ) - REZEEITZEHTEFS. Im(TVTY) € D £T
AoTNTL = A. TH3.
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o € Im(TN+1) IZDWT, (2.5.3) &b
M) < () < C /K pldz (Vo € D).

& T Hahn-Banach OFEH 2.5.3 & (Im(TV ) C LYK),A1,C [ - |dz) ICBEIGL T, %3 G :
Ll(K) — R T G|Im(TN+1) = A1 o

Glp) < C /K plde (Vg € LV(K)).

ERBHDNDHB. o THh3 K LD bounded Borel Bl g TH 2T, G(p) = [ gpdx E78 3.
LT, A= AloTNJrl—Ca?_)%@—C,TEELU)gOE'DK lcDWT,

A(w):/ g (TNp) dw
K
THB. TOT, g &R LOBBMICOMETS (DFED ga) = 0Ve ¢ K) £F3.) [ R =R

=
fl(zg,...,x / / x)dry - day,.

ELTEERTS. ik Lesbegueﬁﬂﬁﬂiﬂf]‘bﬁthti%Ku%ﬁﬂlﬁﬂﬁ'ﬁ’(“ﬁ)%. ATy
VAN SERD i ISOWT 2 (f - (TN ) = ( f) (TN+1¢)+f-(8%TN+1<p).r“z%. ko
THREED p € D IZDWVT,

Jor Grrrie)an== [ (es) - e

B UELD
Mo = [ g @ pyde= [ (G2 T g) (1Y) da
:_/<ai2"'aif> (ailTN“ ) ds

' N+1
/ I 3x1 83:2 anT pde

— (_1)N+2/ (_1)n+N+2f . TN+2g0d:E.
K

EKoTZD (-1 V2FRFLVWBDTHS. O

Theorem 2.5.4. [Rud, Theorem 6.27 ] A € D'(Q), V. C Q CR"™ open. K C Q%& >IN\
JhEEETS. SyppACKD DK CVHDADorder N EHFDODERET S.
CORHD {fz} C inC'(Q) T, B=(B1,...,00) W& Bi < N +2 %43 multi-index T,
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Suppf C V HD
A=Y DAL
B

ERBHDHEFET S

Proof. W CQiopen TKCW CW CV hDW AVNT FbDEERD
253 % A& WICEIGTDE, A Dorder & N THBDT, HDa=(N+2,....N+2) &
f:Q— CEHNH>T

M) = (-1 [ f-(D9)da (v € DOW)) (2.5.4)

E7%3%. ECTgeCr() Tyljp=1D2 Suppg CV ERBHDZEXBZETSuppfCV

CRELTRW. (f & fglcBDEBR3.)
Y eC®(Q) T, Y|xg =152 Suppy CW DBDEEFET 3. 2.4.4(c) 5 A = YA TH 3.

FED ¢ € D(Q) ICDWVWT (2.5.4) 5
A() = VA@) = A(g) = (~1) /Q F(D° (V) da
= () [ Y CosD™ Py D da

BLa

_ Z/Q((_1)lalca5fpa—%)pﬁ¢dm

B<a
& 2T f5:=(-1)l=BlC, s DBy £ B &

M) = Y (1) /Q fsDPddz = 3 (DPAp)(6).

BLa B<a

Theorem 2.5.5. [Rud, Theorem 6.28] A € D'() £ § 3. CORMERD «; multi-index
ICDWT, 3 go € Co(Q) DB > TRZFHILTHDONFET 3.

e FEDIVNIMEEK CQICDWVWT, {a € Z7 | Suppga N K # o} IIBERES

e A=) D%Ag,.
TSI ADEBRD order 215272 51X, BRED g, ZBFWT g, =0 ERBD LS ICENS.

2FD, BEAIE D> & Ag, THEHXMIIHNTS.
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Proof. JR® claim Z5EICRY.

Claim 2.5.6. FEDi=1,2,...,IC20WT, 2 Q; CV,CQ RBIAVNILEEQ; &
open V; &> T, FREOOAVNIMEE K CQIZDWT, {i €Zy | V;NK # o} ITBIR
E/rRBLIICTES.

Proof. 1.7.2 &D
KiCKyC---CK;C---Cf

EBBZAVNI FERIIK, TK; Cint(Kip1) D2 Q=2 int(K;) EB2HDHEET 3.
K() = @, Ql = Kl, ‘/1 = int(Kg) 2:_5_5 LX—FUFEE'%EI‘J‘:

Qi = KZ \int(Ki_l), V; = il’lt(KH_l) \ KZ'_Q (’L > 2)
EERTD. (BIRVIF=DRIELICTS.) 5L

e Q; CV; BHIFK,; Cint(K; 1, DD K; o Cint(K;_1) BDT.)
e Q;; AN+ (EBAIFK; >IN DD Q; C K,closed 72D T)
e V; open.

o 0=, Q EARRBREWAENS, UL, Qi= K, N'EZXEH'5)

BOKIDOWT, B m BH>T, K c UY, int(K;) = int(K) C K. 2 TEKNV,y =0
Nm/ >m+2THDILG, {icZ, |[ViNK#2}C{l,....m+ 1} IFBRTH 3. O

2.3.3 YRLERED (Q; £ET1Tsupport B V; ICAD C° B EBR TS ZET), HB; >0
b ANZS) {¢z}zeZ+ C D(Q) THHO>TREBRETHDONEFETS.

o FEDicZ, IZDWT Suppy; C V;
« EBD2€QUIDNT, T, i) = 1. 1 LEERMITSHS.
« EBDI €7, IZOWT, $3 Wi D Quopen HB5T, {j € Zy | ylw, # 0} WHIRES

TREA=Y" 1 0ATHB. 25480, FED i € Z, ICDWVWT, 3V, LOEGREBDOBRSE
r=)ii3 {fiata hH-oT,
Yih =) DAf;q.

EMMNTB. £ET, ga = oy fia- £HEL.

EBDz € QICDVT, V; OBEAS, [i € Zy |z € Vi) I3BREETH3. 2T galz) =
$° fialz) IBERMT®HS. DED, go € Co(9).

Lo~ MBIy LT TE30H 233D 1 OHEIEEDS
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Claim 2.5.7. FEDIAVNT FEE K C QICDWT{a € Z" | Suppga N K # o} IFHR
£85.

Proof. {V;} DIMH5, {i € Z, |ViNK +# o} IFBREETHS. £-T,

Suppga NK C | J SuppfiaNK

VinK#£@
L.
{fiato SBRET, ZX2 i bEREBDT, 2 M € Zso DH>T, FED |o/| > M LHB o
ICDWT, Suppgy NK =2 £7%8%. {a € ZT | Suppga N K # o} ITERESR. O

FED ¢ € D(O) ICDWVT
A i) =D _(¥id)(@)
—Z ZDaAle )(6)
- ;(D“Agaw) = (;D“Aga)w)

&oT A=Y, D*Ag, £ 5. O

2.6 Convolutions
oE

e D:=D(R"™), D' :=D'(R"),
e u:R" - C,z e R"ICDWT

u:R" = C, u(x) = u(—x),
U : R" — C, mpu(y) = u(y — ).
FEED u,v: R* = CIZDWT, convolution u*v ZXTEDHS:

uxv:R" - C, (uxv)(z):= /n u(y)v(x —y)dy
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BB uxvld, [FEALEDIEIBD x € R" T Lebesgue 5 [, u(y)v(z —y)dy BEZS
NBKFICOAERIND. COLE, EEDLD

[ ute -y = [ o))y = Au(r.o).

Definition 2.6.1. FED uc D', ¢ €D, x € R*"IZDWVT,

(ux*@)(x) = u(120).

CEDD. ux¢p:R* - CTHB.

Definition 2.6.2. FED ue D', ¢ €D, x € R*"IZDWVT,

(Tzu)(9) = u(T—20)
EERTS.

Remark 2.6.3. RO D IID.
/n Tmu(y)v(y)dy = /n U(y) ' T—mv(y)dy = Au<7——$v)-

&7z [Rud, Theorem 6.8] 5, 7,u e D' THHSB.

Theorem 2.6.4. [Rud, Theorem 6.30] u € D', ¢,vp € D &F ZRERME D ILD.
(a) z € R*ICDOWVWT, mp(u* @) = (Tou) * ¢ = ux (1:9)
(b)) uxpeC® FEBEDaecZ ICDVWT D¥ux¢) = (D) *x ¢ =ux (D)
(c) ux(Pp*v) = (u*e)*

Proof. [(a)] 7u(ux )(y) = (ux §)(y — x) = u(ry—e6)-

(Tzu) * ¢(y) = (Tru)(7y¢) = U(T—w(Tyd))) = U(Ty—m¢)'
BEED, ux (1:0)(y) = u(ry(120)) = u(ry,m20) = u(ry_»0) ELRBDTERB.
[(b)] D¥(¢) = (—1)ll7,(DYg) THBDT,

(D%u) * (x) = (DO“U)LT_%%) = (—1)*lu(D*(7,9))
= u(1e(D¢)) = (ux (D"¢))(z),
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&oT (b) DFDERDIFFL LY
% e € R™; unit vector £ L, r € R\ {0} ICDWVWT g, = L(19 — 7e) £ T 3.

()@ — P =0l =re) _ (e —re) —olx)

r T

THB. (a) &D ne(u*d) =ux* (n(¢)) THZDT, AEMPZEZXS_LT,

() = Dep (r — 0)

NDETERD. o THEED 2 cR*"ICDWVWT, D LT

—~—

Te(n(9)) = T2(Deg)  (r —0)
8%, L&D r=—tICLT
(ux @) (x +te) — (u* ¢)(x)

lim ; = lim(n(u * ¢))(z)
= lim u * (1,(9)) (x) = lim u(7s(n:(9)))

P

= u(Tz(De)) = (u* (Deop)) ().

CNEDBREBDEL T usdc 0F ¥ (b) ORDEEDIFZELV EADAB.
[(c)] EE®D 2 € R* ICDWT, KA D LD

o (ux(¢x9))(x) =To((ux(dx1)))(0) @ (us (T—2(¢ % 1)))(0) = (u* (¢ * 7—2¢))(0)
o (ux¢)x¥)(x) = T—o(((ux @) x1))(0) = (((ux ) * 7-2))(0).

MEED (ux(¢x))0) = ((uxg)*1)0). ZREIFELN.

G0t = [ ot —ydy= [ (s — typ(—s)ds = / B — typ(—s)ds
Rn R Supp ¥

THBHNT,

(1w (¢ 1))(0) = u( / O — ) (~s)ds) = /S L u(mo)u(=s)ds. (2.6.1)

Supp ¢

3T, fSupp¢¢(3 — )Y(—s)ds DEBDZE) —IVBBRELTHIRTS. S r € Ry T Suppy C
[, 7" 122 DE—DBETD. FRDL € Zog &k = (k1,...,ky) €10,...,0—1}"IZDWT

Ay ::H[—r—i—%%, —r+2r
i=1

7 .
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CEERTD. Fit fA d(s—t)ds. £ 3. THRLERNEZXD

e Supp Fy, C [—7,7]" \ Supp ¢, €L T, Supp Fj (EAYNT bHD L & kICE B0,
o [ c(C>® ER5IE, Supka AVNIERT e C° THBDT, MPDELBEIHRIBETE
BH5. BHZ DOF(t) = (~1) [, D% s—t)ds).

&oT F, € DTH3. C#’Lotb, q:'FEﬁﬂE@fEfE% n@@'B _ETHD T € Ag _C‘-‘%’)_C,
Fi(t) = o(ar— 1) - (%) (2.6.2)
CRBHDWEFEETS. £oT

L ettwsis=lim 3 gt (3) = fm Y wm B

oo —
kef{0,....4—1}" kef{0,...,0—1}n (263)

&2T, Supp F, & L,k ICERSBVWIY NI FESLEICEENTVLWT, AN FESLETORR
INRIEF—HFRIERHDRE L HDT, D LOINKRERELTHS. 2D

Jim zk:¢(—xk)Fk(t) = /S upwgb(s —t)i(—s)ds inD (2.6.4)

THd. ULELD
(ux (@ x))(0) (2.6.1) u</Supp'¢) ¢(s — t)ﬂ)(—s)ds)
(264) <elggozw —xk) Fr(t )
259) Hoo?ﬁ —xw)u(Fi(t))

—ATY—=IETDEERIS

((ws 8) *9)(0) = /S (1(70)) D)
= Jim Y u(r, v (o) (%)

2.6.4) {—
(2:6.4) L=00 4

=i S (ol t>>w<—wk>(%”)n

{—00
k

= 1
T i 2 V)

K2 T (ux(d*))(0) = ((uxp)*1)(0) BWVWET (c) DEFRDWVR . O
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Remark 2.6.5. 2.6.4 ORUFEEE G(s,t) := ¢p(s — t)h(—s) &BLLELHBD K C R* B'H->T, FRD
s ER"ICDWVWT Supp (t — G(s,t)) C K TH3. £2T253h5H3 f € C° a ¥ multi-index
ahH->T

u( G(s,t) ds) / |O“f DO‘ G(s,t)ds)dt,

Rn
w(G(s,1)) = / (1)l f . DOG(s, 1) dt.
ERBLONEETS. COYE— MRV /NS FEDT, M LA B DV 1.

Definition 2.6.6. [Rud, Definition 6.31] h; € D D% {h;};>1 D approximate identity”
on RN EHEDLIE, BB heDTh> 0D [y ha)ds — 1 L55HDNB T, EED
JEZyICDOWVWT

hj(xz) = j"h(jz) (j=1,2,3,...)

MEDIIDZr 7 3.

Lemma 2.6.7. {h;};>1 “approzimate identity” on R" Z¥D2LF3. f e COIZDWVT,
ERDLeR" ICDWVWT

lim (f * hj)(t) = f(t)

Jj—00

Proof. EE® j € Z4 ICDWT K := %Supph bk

(F 1)) = (s x £)(0) 1= [ ("B - 1t~ ) do
%7 approximate identity” &0 [o, j"h(jz)dr = [p, h(y)dy =1. £2T

mj =inf{f(t —z) |z € K;} < (f*h;)(t) <sup{f(t—2) |z e K;} =M

&oT
my = [ GhGGe)) mds < (Fs)(6) < [ (GhG) - M do = 0
IREEBDT, lim; o M; — m; = 0 & 5T limjyo(f * hi)(t) = £(2). 0

Lemma 2.6.8. [Rud, Theorem 6.32] {h;};>1 "approzimate identity” on R" Z 2L T
5. 2D, ueD.

RO D ILD

(a) limj_yoo ®*hj =P in D
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(b) limj oo u*hj =u in D’

Proof. [(a)] Cone(Supph) := {sz|z € Supp(h),s € [0,1]} £ TD. CNFheDLDODIVNT K
T&HB. Supph; = %Supph C Cone(Supph) THD. 2> TERD j € Z, ICDWVWT

Supp(® * h;) C Supp® + Supph; C Supp®P + Cone(Supph).

T#H3.(x € Supp® DDt —x € Supph; B5IE, ®(2)h;(t —x) A0 THBLITER) > THE
B j € Z,, multi-indexa, ® € D DHR— AV /INT FRD T,

Supp(D*(® * h;)) = Supp(D*® * hj) C Supp®P + Cone(Supph)

%%, EED t € Supp® + Cone(Supph) ICDWT, 2.6.7 £ D limj_,oo (P x hj)(t) = () 2D
DT D DPRNNZ B.

[(b)] {h;};>1 "approximate identity” on R" Z3DDT, {h;};j>1 BELEEERFD. £oT

—_

u(P) e Jlggo u(hj x @) pei) Jlirglo(u « hj* ®)(0)

= lim (u * (h; * ))(0) = lim ((ux* h;) * $)(0)

Jj—roo 2.6.4(c) j—o0

= lim [ (uxhj)(s)®(—s)ds= lim [ (uxh;)(s)P(—s)ds

J—00

BRDIODT, Wl (D OEHEIRE SR TS 3)

Definition 2.6.9. [Rud, Definition 1.44] Q C R"™ open, C°(Q2) Q LDEHEAROES L
5.

CO(Q) DAIEEXRTEERT 5:
KicKyC---CK,C---CQ
EVWSAVYNY FERDHE—DED. 1.721E&2T,n=1,2,--- ICDWVT,

Vo :={f € C%Q) | sup |f(2)| < +}
zeKy,

B, Vy(n=1,2,---) B0 D local base &% 3 CO(Q) ODNEHNTEET 3.
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Theorem 2.6.10. [Rud, Theorem 6.33]

(a) ueD IZDWT, L:D—C>® %

L(p) =u* g

EF3. (uxpe C®Ix264&D) COR L IFESERERERTEED pec D &
r€R"ICDWVWT

T2(L(p)) = L(72¢p) (2.6.5)

(b) WIEFAREEBMRL : D — CORY) M (2.6.5) Zi#T=37251E, ue D' T L(p) =
uxp EBBHDNIE—DFETS. 1FIC Im(L) C C.

Proof. [(a)] (2.6.5) 13 2.6.4(a) & D. EHEASH. &> T LHAERZREIFTRL. C & locally
convex DT, 1.8.11 KDFEEDIAVNI FEE K CR"ICDWT L|p, : D — C* HERZE
ZIER L.

Dk & C™ |& F-space (1.1.6 Z8) DT closed graph theorem (2.6.11) & D
{(z,Lx) € Dx} C Dg x C*
M closed ZREIERWV. £oT

e v, = pin Dg MD
o L(p))=uxp; = fin C®

DD ILDEFIC, usx o = f BEDILDZZREIFRL.
chUdz e R*ICDWVWT

F() = lim (uxo)(@) = lim u(r@) = u (hm sa) — u(np) = (wr)@)
1—00 2.6.1 i—o0 1—00 Tep; — To@ in D
DBEDILI DD TULWZT=.

[(b)] u:D — C% u(p) := (L(p))(0) TEDD.
FTueD ZRY. u BEEDNDu(p) =evopo Lop THD. UAELD
T:D =D and evy:C'R") = C
HEFREZTREIERL. “THEGIZEAS D, evg DESFIHED 0 € COR?) TEFZTEIL L < (F1T8

BTARERENS), CHUF0 €U C CopenIiZDWT, 2B N € Zsg &> T, evo(V,) CU &%
B2CEEDERD. LoTu lFEFHETULR L.
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TIZp e DIZDWT L(p) =uxp ERY. (2.6.5) &b

(L(p))(@) = (T-=(L(¢)))(0) (L(T-29))(0) = w(T20) = w(r§) = (ux@)(z). (2.6.6)

def (2.6.5) def

FoTWVWZRT.
CDESIBuDTE—DTHEIZRT. u,u' €D TL(p)=uxp=up THRLTDL

(L(£))(0) = (ux)(0) = u(p).
5%, o> TEEIZLT L(p)(0) = ' (3). THBDTERT-. O

closed Graph Theorem I TFDHDTH 3.

Theorem 2.6.11. [Rud, Theorem 2.15] T : X — Y B F space EDIREERE T3,
Gi={(z,Tz) € X} C X x Y H'EAKEHR 5, T 135885,

Definition 2.6.12. [Rud, Definition 6.34]
u €D T,SuppuIAV/INT b&T 3. 244, [Rud, Theorem 6.32] IC & D 8 B &EFARELIM
u e (C®) :={p:C® — C| p EFHRE }

PH->T ulp=u &B23HDNHD. AT, 0 H uweh<.)
CDOELIFAEED pc C®IZDVWT,u*xp:R*" - C %&

(ux ) (2) = u(re9)

ELTERT 3.

Remark 2.6.13 (u DEEDEE5W). we D' T, Suppu MIAVNT bETB. u DIERIERD &
B (FLLIE244B8BDZ L)

Y ED T, Ylsuppu = 1L BHDELS. TRLEERD f € O, IZDWVWT. u(yf) 1& ¢ ICERELE
WCENERSD. &0,
u(f) = u(¥f).

CEDS. 2.4.4, [Rud, Theorem 6.32] MSIMNE X 3.
(a) EE®D f € C®IZDWT. Supp fNSuppu =@ B5IF u(f) =0. FFIC f,gec C*Tf=g

D Suppu ETHDIIDESIE, u(f) = u(g) BEDIID.
(b) Suppu =@ B5IFu=0.
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Theorem 2.6.14. [Rud, Theorem 6.35] uw € D' T, SuppuMAVNNT ~LTB. p € C%,
Y € DICDWTRMAEDILD.

¢ € DDIFEI, (FTR—bIVNI FOIRERLIZ), 264 TEXTWS. EDOHFERH I/
I b R-FDBEICRB/ESES.

Proof. (a) & (b) t&2.6.4, [Rud, Theorem 6.30] £E L ((a) FERICEDWIETER, (b) BREIL)
[(c)] EBABZDIETR— ROV NT B2 .

Supp(7z¢) = {t € R™ | 7,4)(t) = ¥( — t) = 0} = {w} — Supp ).
THB. 1272l {z} —Suppy :={z —t |t € Suppy} £93%. > Tz eR"ICDWVT,
Suppun ({z} = Supp¢) = & = (u* $)(z) = u(rs9) = 0

THD. ALK D Supp(u*1) C Suppu + Suppty) THB. &> T Supp(ux*) IFAV /NI FTH
D.uxypeDTHD.

[(d)] R, FED 2z e R" ICDWT

(ux (pxh))(x) = ((uxp) xY)(2) = ((u*x ) * p)(x)
TH3. £ =0ICRBETITZETRYT. CHUFE2.6.4(c) DIABEREILTH 3. K 2.6.4(c)
ICHEWVWT

o (ux(px9))(@) = To((ux (p*1)))(0) = (ut (T—z(p *1)))(0) = (u* (¢ * 7-2¢))(0)
o ((ux@)x)(x) = T2 (((ur @) *1))(0) = (((u*p) *721))(0).

ERLE. (CHEESICESVHEARDOT, SORRTHMDIID) £z (r_o1))(—t) == h(z—1)
THZDT

((ur@)x)(z) = /H(U*w)(t)%ﬁ(iﬂ—t) dt = /n(uw)(t)'(lel})(—t) dt = (ux(p* (T-21)))(0).

def Jp

E83. £2TC, 0,0 Z 7 00,7 .0 ICBEEIWIZLT, 2=0ZRELTRL.
LUF, S 7= IR ZEERT
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(1) W C R™ %Z bounded open TW = —W D Suppu &%&3HD
(2) W' C R™ % bounded open W = —W' hD W' O W + Suppy £22HD.
3) oo € DT, W ET o= &R2HD. CORW' =-W E£T po=¢p TH5.

EED 2 € WICDWT,
t ¢ {x} —Suppy = ¢Y(zx—t)=0 (2.6.7)
£2o7T
o)) = [ vt = [ e [ o) vt d = (o))

(2.6.7) (3)

EBD. W=-WCERBIDT, W ET px1p=¢pg*1p £785. —W D Suppu &b,

(us (px9))(0) = (ux(pox1))(0). (2.6.8)

2.6.13(a)

—5T
(s 0) % )(0) = / u(mP)(—t)dt = / o R

n (2.6.7)
W' & oo DEBRNMSEED t € Suppy ICDWVWT @li_yyiw = @ol{—4w CTHB. K2 Tnglw =
Tipolw THBD. AELD

((ux ) x)(0) = ((uxpo)*1)(0). (2.6.9)

2.6.13

(c) DEEBAT Supp(u * ) C Suppu + Supp v, THD_EHHN>TWVWBDT,

(s w) =20 = [ (wrd)Op(-t)ds

n

) /Supp u+Suppw(u * )t de (2.6.10)

3) /Suppu+Suppw(u *P)(E)po(—t) dt = ((wx ) x 20) (0).

&£ 2T (2.6.8)-(2.6.10) ICED, pZ oo ICMDEZR D LT, o € DZIRELTRL. ZDHEI,
2.6.4, [Rud, Theorem 6.30 (¢c)] TEZXTW3. O

Definition 2.6.15. [Rud, Definition 6.36] u,v € D' T Suppu F7=l& Suppv B> /ND
FTHBDETD. COEEL:D—>C®%

L(p) :=ux(vxyp) (p€D).

ELTERT 5.
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Remark 2.6.16. L |& well-defined Td 3. H L Suppu BAV/NT R G5IE, v e (C) THB.
—5264&D vxp e C®RDT well-defined TH3. H L Suppv AV /NT b ARSI, 2.6.14
M5 vk p e DIRDT, well-defined.

F-EFED 2 e R"ICDWT, 7, L = L7, THD. Zhild

(L)) 1= TalL(@)) = Talux (0 9) | =k (0% (ro9) = L(rasp) = (L72) ()

ERBHHETHS.

Lemma 2.6.17. A D - C%Z o — (L(9))(0) TEF S &, U distribution TH 3.

Proof. ##H2ISEBH. ERTH B cZzntEITRL

CORNEBIE () D—>D,L:D—C®  evg:C®° - C. DERTHS. £o7T, (7) hW&ERLD.
evgo L WEfiZ S X ITEL.

[1. Suppv AT FDFE] 2.6.10 & D, o — v IXEH. Tz, 2.6.14(c) BB v*xp €D. &>
T26.10(a) & O LIFESH. €L T, 2.6.10 DFEEEAL S evy IF&EHE. & > T OK.

[2. Suppu AV /INT FDFE] evpo L IFRDZDDEXTH .

e Do>p—vkpeC™ ZNIE2.6.10(a) & DEHL.

e O > fru(f) € C, ThiE2.4.4 &KDiESE

UEED evgo L ITEKTHS. O

Definition 2.6.18. [Rud, Definition 6.36] u,v € D' T Suppu F7=i& Suppv B> /NY
FTHBDETS uxv:D—-C %,

(uxv)(p) = (L(©)(0) (peD).

ELTEERTS. 26.17&D uxveD TH3.

}Eemark; 2.6.19. 2.6.10(b) DFEMD D, u x v &
(usv)* @ = L(p) for Yy e D.

% m -9 ME—® distribution TH 3.

Proof. A% Axp = L(p) £ 3BEHE T 38,

(A 9)(@) = M7af) = AMF39) = Lr-a9)(0) | = 72 L(¢)(0) (26.11)
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MELD

M) = (A5 9)(0) = L($)(0) = ((uxv) ££)(0) = (u*0)(7)

EHDA=ux0v &3, O

Theorem 2.6.20. [Rud, Theorem 6.37] AT A € D' ICDWT, Sy := Supp A CBEEET 3.
w,v,w € D IZDWVWTRHAEDIID.

(a) Sy DSy, D eptBHBIK, uxv=vxu.

(b) Sy DSy, B ept B BIE, Syswy C Sy + Sy

(¢) Su,Su,Sw DENDZ DD ept B BIFE, (uxv) *xw =ux* (v*w).
(d) FEED multi-index o IZDWT,

D% = (D) * u

T#H%. ST 6 & Dirac OB (5(f) = 1(0)). £ T3, BICu=0+uTHB.
(€) Sy DSy, D ept BBIE, EED multi-indeza IZDWT,

D*(u*v) = (D%) * v = u * (D).

B E&L D convolution I3 distribution Td5 > THEIED convolution L FFKICIKZDS CeMNTE 3.

Proof. [(a)] ¢, € DICDWT,

(wrv)x (o), = o ur(vs(ey)) 2611(d) ux ((vx @) *1) 2611 ux (Y*(vxp)) (2.6.12)
o S, cpt BHIX, 2.6.14(C) KD vxpeD. K2 T ux(¢x*(v*d)) b6 Ta) (u* 1) * (v* ).
o Sy cpt WHIE, ux* (¢ x (v* ¢P)) 2611 (u* ) * (v* ).
£-oTE2BICL A,
(uxv)*(¢*1) i) (ux 1) x (v* @), (2.6.13)
THD. u&vDREZANEZT
)5 65 0) = (0su)s (056) = (0x) = s v), (26.14)
HWRB. —ATuxp,vx¢p € C°RDT
) (on0) = (wr)elond) = (oeg)elun) = (veun(pes) (2615
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MELD

((U*U)*¢)*¢2E4 (uxv)* (P *1)) (U*U)*(¢*¢)2E4((U*U)*¢)*¢- (2.6.16)

(2.6.15)
4 ¢ %Z 2.6.6 TD approximate identity of R" Z#fD7F {h;} &I, 2.6.7 LD

((wxv) x@)(t) = lim (((uxv)*¢)*hy)(t) = - lm ((vxu)*)xhy)(t) = ((vxu)*)F).

2.6.7 j—ro0 (2.6.16) j—00

MEELD EFED peDICDWVWT (uxv)xdp=(vsu)xd THBANT,2.6.19&D uxv=v*xuT
H5.

[(b)] (a) &P S, cpt ELTRLV. (u,v ZANBINBZT®)) FED ¢ € DICDWVT

—~—

(ux (v*¢))(0) = u(v * ).

2.6.18 2.6.

(uxv)(¢)

Ey

Supp(v * ¢) C . Sy + Supp ¢ = S, — Supp ¢,
2.6.14(c) DIEPAR

& D, Supp(v*¢) C Suppop — S, £HB. UELD, g€ DICDVT
Supp ¢ N (Sy + Sy) =T < (Suppd — S,) NSy =D = (uxv)(p) =0

& 2T Support DEE 2.4.1 D5 Sysy C Sy + S, THB.

[(c)] (b) &D Sy, Sy, Suw DENDZDH cpt BHIE, (u*v) *w P ux* (v*w) & well-defined T
H3.

peDICDOWVT

(ux (v*w))* ¢ s U ((v*w)* ) s U (v * (w* @)). (2.6.17)

Sw DY cpt DIFE, w+* p € DIRDT,

((u*v)*xw)* @ = (u*v)*(w*qb)(: ux (v (wx*)).

(2.6.17),2.6.19 2.6.12)
£2T2619&D ux(vxw)=(u*xv)*w THDB.

Sw D cpt THRWIFH, Sy cpt RD T,

ux(Vkw) =ux(wxv) = (wW*xv)*xu = wx(v*ru) = (Vru)*rw = (u*xv)*w.
( )(a) ( >(a)( ) toEs ( )(a)( ) (a)( )

ENU NNV & =
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(d)] 6 €D, 2 € R*IZDVT,

(6% 9)(x) = 8(rd) = (1.B)(0) = 3(—=) = B(a),

THD. £2T,0xp=¢ THD. ULELD

(D5u)(@) 5, (PTux9)0), Ty (w* (DINO) 2= (ux (DHE+)(0)
ot [ (DT £ )(0), = ((ux (D°0) +§)(0) = (D*0) +u) + §)(0)
2.6?18 ((D%0) * u)(@)-

UEELD DY = (D*) xu THOHWZR Tz,
[(e)] Ss cpt DT u,v,d ICEAL T (c) MEXBRRICHD. &2 T,

D%(u xv) g) (D) * (u*v) (3 ((D%0) * u) xv 5) (D) * v,

DYuxv) = D*(v*xu) = (D%)*xu = ux* (D),

(a) IOF + (a)

THBE2DTERLHB L,
D%(uxv) = (D%) xv =ux (D),
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2.7 Current

2.7.1 current

M 2nd countablem X7t C™ KZIKAEL T 3.
Recall M C R™ QEF C°(M) ICIEFRDAMEZ R TANTUL .
KiCKyC---CMEWSAVYNI FERATH-T

K;CKjy; and M=|JK}
EBZ2HDE—DBEL, f € C®(M)ICDWT, NeZ, &L T
Pn(f) := max{|D*f(x)| | |a| < N&z € Ky}

Vn :=max{f € C°(M) | Py(f) < %}

% 0 @ open base £ T3 &K SBRMAMEZ ANTULE.
KcMIYNT7RIXLT

Dr (M) :={¢ € C*(M) | Supp(¢) C K} € C*(M)
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(2% L THEXuEZ ANT

D(M):= |J Dr(M)=limDg(M)
KCM|K cpt K

Z @ colimit (& locally convex vector space CT® colimit TdHS.

Lemma 2.7.1. 1. U U CR" ZREELT3. U2 U ZWHORENHEL 3K, C°(U) =
CoU") THB. CCTIDRBEIIMIMECARY MLEREORRTH S
2. M CR™RESEL, M = U; 2aIBEEDOREEBE L ¢ 56

Co(M) = [[e>W) f—{flv}

r$BE, C°(M) DRARIEC OBERBAAE [[C®(U;) Ic& > TSR TN B MHEL
3. BIC
C>(M) = Eq([[c>W) = [[C>W:nU;))

EWSHMECARY MLEBOREZES.

Proof. (1). MFK1 CKyC---CUEWSAYNT FEBTC®U) DLtBZzFETZ2HDz—
DEETS. ¢:U = U, (21,...,2m) = (Y. .., ym) EHARAEERC TS, §5L K, = d(K;)
Kk 5T, C°(U) DRABEHEET 3. Vy,V, ELDBED LT 3.

ITED5|IETRL
P*: C°(U) = C®U") fly)— fod(x)= f(y(x))

MIECART FIEEOREZFETZ 2R Y.
feC®U)IZDWT chain rule £ D, || < N IZDWT

Difo®(z):= Y  (D)f)(y())- Pas(x) (2.7.1)

IBI<N’

THD.

OH0DEETERTHS a2 REIXRVL. FED N ICDWT, Ky AVINT R BRDT, Ky
ETR |®up(2)| < Oy &%8B Cy BEIND. Lo TN -+ Cy < 7 £%B N Zrhid,
fod e d*(Vy)IcD2WT

D3fo (@) < 3 DINE)| 1Pas(@)] < N+ O < 1

E->T MEED N >0IDWT, 3 N > 08%>T, & (V) C V), THBI1 128 D I3 0 DE
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FETERTHS.

2)M=U2,U;£3%. &U; T
Ki CKppC---CU

TU; =U; K5 £ B3AYNR0 ML 3. 2L TKy =L Kin £33
KiCKyC---CM

TH>T, K; C Ky B2 M=K t%i3.

TTI[C™(U;) D0 TD local base I&

{Vi,N = ‘/;17Ni1 X ‘/;2,1\71'2 Koo X V;z,Nil X H C=(Ui) [ <ig <+ < i, Ni, € Zy}
iiy

ERBEDHDTHS. T

= (il,ig,...,’il),N = (NilaNiQ,---aNil) &:ﬁgy)é
e VN :={feC®U) | Pn(f) < %} THB (CTDEETD Py(f) IKIF K; n ZDODS.)

—HTVy:={f €C®M) | Pn(f) < ¥ HC ZDEERTOD Py(f) ICIF Kixn ZDOHD5.) THO, C
NUE C(M) D 0 TD local base TH 3. UELD, ROZOZTREILRLY.

o FED i, NIZDWT, H3 NHH>T, Vy CVin NC®(M) DREDILD.
e FED NIZDWT, %34, NHDH>T, Vy D Vin NC®(M) DD ILD.

N
1
=1

= <V1,N><V2,N>< XVN,NXZI;IVC (U))ﬂC (M)

= Vii2,...N),(N

-----

THd. INEDZDOHOEFEREHMNELWLWZ EHWVWRDZ. —OHDOFERIFEED i, N ICDWT,
‘/;nax{i,N} C %,N N COO(M)

BOTEXS. 0
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Definition 2.7.2. M 2nd countablem XJT C® RZRIE L T5. C°(M) IZAHMEZRD &
SICANS.
F9TM=U2,U; TU; CR™ 73 countable open cover #—DEET 3. €L T,

C=(M) = JTC=W) fr— (flon)

ICK BEBRNMIE%E C°(M) ICANS. DED,

C>(M) = Eq(J[c>W) = [[c>W:nUy))

EBRBDEIICANS.

Remark 2.7.3. 272 ICKBAUBDERICEWVT, U; DEXD AICK 5740
Proof. BID U} & £ % M9 U; N UL 'BING. &2 TROMADEZ 5N B.

C*(M)——[1C>(Uy)

T T

[[C>U)———1IC*U:NTj)
Z C T AR O ERISER I BB DT, 271 KDEX 3. O

SruckD
C® (U C M) CP(U)

open

IFC AR MILERBD sheaf &85, > TK C MIZXLT
Dg(M) :={¢ € C(M) | Supp(¢) C K}
ELTC®(M) DEBBAMUEZANDS.

D(M):= | Dr(M)=limDg(M)
KCM|K cpt K

Z @ colimit (& locally convex vector space CT®D colimit THB.

(1548 C D colim IFTEIET S ? P 2IED Section 1 TR 2 7ck D BRAEDANKICH S —EIRSB?
lim, Di (M) IEDWTIEREIFE.
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=+
2.8 current Hix

LR [NO] dEgEICEHLE S, (M 2nd countable m MRIT O HRBHRIK, k € Z, £ 9 3.)?

Q

e C(M):={f:M—C; iEf}
o E(M):={f: M —C; C~-E¥} BRI C®(M) TH3.

o CH(M) :={¢: k-forms on M with coeff € C'} DE D locally IC

p= Zgojdi‘] (dz7 = dz A - A dZF)
T

EMFBHDETS. T (U2t ..., 2" EBFREIZC L, J = (ji,..., k), o7 € C(U)
£93. KT CO(M) = C(M).

o EF(M) := { p: k-forms on M with coeff € £} ZilBlE" AX(M) TH 3.

o k(M) := {@EC’“(M) ‘ supp ¢ Cpt} CCT Suppy = {zeM, p(z) #0} THS.
(@) A0 &IFHBB I DB>T, pi(z) A0 THDIEZEHKT 3.

e DF(M) := {(,0 € EF(M) ‘ supp ¢ cpt}

¢ AC MISDOVWTIUTDLSICHEL

Kﬁ(M):z{goGle(M)‘suppgocA} Dljl(M)::{goeDk(M) suppgoCA}

i Cc
E3Ee C(M) | E(M)
k-form Ck(M) | EF(M)
k-form with support compact | C¥(M) | D*(M)
k-form with support C A | KX (M) | DX (M)

Recall

U CR™ open DEE. C(U), EU) WIERD &S % iz VR T W e,
3>N7F$é@ﬂﬂ]CKQC”%IUTK%CK%I#9 UﬁﬂhK§K@5%®%mD,
Fe&W) KL

Py(f) = rnax{ 1D f ()] ‘ e Ky, || <N, we KN}
Vi = {f e £(U) ‘ Pu(f) < %}

%Z open base at 0(0 TORE) ¥ 932z AN TUL .
*EESKBEDRELNBDESHRAETHI LEDNS.
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271ICED, TNHAVNY FEEGDHIPEIEAEU C R™ ICK 5K
—MROSHREICEALTIE M ICRHLTE M =, U; EWSERAEOREBEZE>T

M) c [[£w;)
BB fBE AT,

Definition 2.8.1. U C R™ open XL, CF(U), E¥(U) o L THME%:

gy~ I ew)yadz’

J=(j1<<Jr)

ICk BERUBZANS.

CHUIERD /UL
Py(p) = max{ [D%p, () ‘ reKy, |o| <N, we Ky}

ICDWT, EU) CRL &S ICAIBZEANTEDDIC—HRT .

Lemma 2.8.2. 1. UCR™, U CR™ openlCDWT, ®:U" — U h diffeo DL EF
o+ EFU) = MUY

M C LOAMMENT MILEEDREREZFETS.
2. U CR™ open, U= Uj U; * countable open cover {IZDWT,

M) = [[EMUy)

(FEB AR E BB

Proof. (1) @ :U'(2Y,...,2™) = U(y',...,y™) diffeo & LT

ot g8 U) = [[e)dy’ — EMU') = E(U)da’
J

IEUATDELSBFACHES.

J

0
=Y o (X0, )t
J I J
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£7%%%. CCT

8y‘] B Oyk
9ar = 4t (50r)
£93. £2T271Tysi=s o HNEFTHDI_EEE>THED, MELZDHEFRDT, E
BMENE X S.
(2) -
[[eda" = b ) — [[eFw) =] (HE(U) dzI> o H(H g(Uj)dzf)

i ] 1 1 J

1 @ i

C7%%. 271 TH5, E(U) C [[; £(U;) MEBAMARICR > TWADTVRTE. O

Definition 2.8.3. M 2nd countable m XXt C> fBFKFIZDVT CF(M), EF(M) 12K
D& S IftEZE ANS:
M = JU; =EERERE U; D countable covering & L,

eh) = [T 4wy
i

IC& BEDBZANS.

A C M compact subset ICDWT, D (M) C E¥(M) I closed subspace T#3.(F®D remark
BE) Dk (M) IZId £F (M) B subtopology & % L\

Kk (M), DF(M) 121

B ::{ W C D¥(M) ; W = non-empty convex balanced

s.t. VA C M cpt, W N D5 (M) is open in DJIZ(M)}

% 0 D local base £ 23 tH%E ANS.

\. J

Remark 2.8.4. 2.7.1 15 EF(M) OAIABIGEEASESE D {U;} OEDAICKS GV, T5ICT O
M

EF(M) — EFU) U C M loc. coord.

ICB89 % weak top. TdhB (weak topology ICBE L TIE??7EE)
DE (M) C EF(M) & closed subspace D& x € U C M loc coord. IZxFL, RAEH

v, EF (M) = C¥ o — (p(2))s

MERT, DE(M) = Neean a Ker(e)vy EBMNF B DT closed subspace X738 3.
KF(M), DF(M) DRAEZEFEL WS K, 184D &SI, EEBET %, "Uie (0i + W) EDNTBH
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D'DEXEDETS. 1=12LicTIZDVWT, o, € DF(M), W, € BET .

dom local (U C R™) | global (M mfd.)

form ck(U), EFU) | CF(M), EF(M)

form support C A | KX (U), D5(U) | K% (M), D% (M)
form support compact | K*(U), D*(U) | K*(M), D¥(M)

EVWSHEHHS.

Proposition 2.8.5. M 2nd countablem JRIT C™ HEZBFIKICDOWVWTUTHAREDIID.

o EK(M), DX(M) locally convex, complete metrizable iif8 C R% ~JLZERE Heine-
Borel property.
o CF(M), KE(M) locally convex, complete, metrizable ikl C X% ~JLZER].

Proof. k=0, M =UX,U; CR™ BREICALTIETTISRLTWLWS
UK TENU) = C®°U) IZD2WVWT, AYNI FEBDY) K) C Ky C -+ TdH> T, seminorm
® separating family

Py(f) = max{|D*f(z)| ; v € Ky, |a| < N}

IC&K > TAIMEZ AND L, metrizable fiifH C XY MLZERETH 2 Z &HHHB. (T CIC open cover
7' countable H'\ %)

F7??7T complete & Heine-Borel property Z/RL7c. (C CICTFHEDOEEZEDS. DF DS
AIEEMN VNS, ) Ko TCWU) LTHREL T, Heine-Borel property M9} 1& E#kICTE %,

k>0, EF(M), C*(M) IZBAL TlZ, seminorm %
Py(g) = max{ |D°, ()| | 2 € K, J = (j1 < -+ < ju), o] < N}

ICEZNUIERICE R
EF(M), C*(M) ICBLTIZ Bl 2.7.1 (2) TEX SNV INY MEEDFIE L 3. BEMIC
(M = UUj L Kil C KiQ cC---C Ui B AVIND I*%é‘?'“:’)b\’c

N
Ky:=|JKin
=1

Pr(p) = max{ 1D (2))| ‘ zeKiy CUnJ=(j1 < <ji) o] < N}

EgdL KiCcKyC---C MTZ@D, E*i@gigﬁb\gé
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Kk(M), DE(M) 1& #hzEhn Cck(M), EF(M) ORISR ZEMAD T, #HEEIFRNS.

Proposition 2.8.6. (c¢f. 1.8.7)

(a) V C DF(M) convex balanced \ZDWT, V H open THD Z &lE, FEED compact
AC MIZDWT, VNDE (M) C DE(M) TH3CZ L LRAE.

(b) AC M compact & LT &, DE(M) c DF(M) EROHRIAEZER.

(c) E C D*(M) bounded@bti $H3 compact AC M TH>T, EC DE(M) k3.

(d) D¥(M) & Heine-Borel property % 3§D.

(e) D¥(M) = colimacns epe DY (M). T TZDREUF locally conver i C RXT ML

ZERELTORETHS.

FIcLEDERIF DA Z Ko ICEZTHHEDILD.

C

(&

Proof. [(a)] 1.8.6 5" D*(M) THEZX 3 (1.8.7 (a) DERH[EIS)
[(b)] D% (M) — D*(M) I%, (a) KD EFHTHS.

—7%, DF(M) — E¥M) b BHRTHD. HERSIE EX(M) 1F locally convex & D, convex
balanced 7% open base at 0 £R3HDHH 3. €NH5Z VD DE>TH convex balanced THD,
& DN (M) IZHIBRL TH open DT, DF(M) ®_LET open &7%43.

[(c)] MB%ERYT. E C D*(M) IFEED compact A C M IZDWT, E ¢ DE(M) ZimfzdLd
3.3 O E b bounded THWI E%RY.

KiCKyC---CMEWSOAYNI RERTH>T
K;CK}, and M=|]JK;

ERBBHDZLD. EDREDS, % pp € E X xp € K, THDT, op(an) # 0D D {zn}nez,
IFERBRZHFLLEVWDHDHAENS.

Z_TCr, €U, CMEVWSHFAEZEZE ST,
1
W:={y| m}ij(a;n)] < max |¢n,7(c)| for any n}

EBL. (b=, Onsdr! CDFETS.) W IE convex balanced open in D*(M) TH 3. HER
51, convex balanced (& |- | DMEMS. FEED compact A C M IZxXL, U, C A&R3B U, I&
BRETHS. 2L TWNDE(M) IF open in DY (M) TH3. (AEESDERI DHEEDSHD

SHBcELsc ATH>T, o) 20 WS T LRL.
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LOALEEDn € Z ICDWT, @, €nW ERBDT, E¢ nW THD, ElF bounded TIE7RL).

[(d)] bounded closed E C D*(M) |& compact THDZLEES. (c) &0, %3 compact A C M
T, E C DE(M). (b) &b, DK(M) C DF(M) IEZEBRMEHNAZDT, E C DE(M) OFTIE
bounded HD closed. & 2T 2.8.5 M DX (M) ® Heine-Borel Property & DE X 3.

[(e)] D*(M) L, v % locally convex fifl C R% b LZERD C 9BERE T3, 5 LROFEIEE
ENTE3.

[HEHRTHS
<= VYU C V : convex balanced open IZ¥ L, f~*(U) open
= YU C V : convex balanced open. compact A ¢ M IZR L f~1(U) N DY (M) open in DY (M)
= flpr ) DN (M) — V Efx

map H' C-linear R EICDWTHRKRICEZ S DT,

Hom(D*(M),V) ~  lim  Hom(D§(M),V).
ACM compact

Definition 2.8.7. {V) C Uy}aea EEWVE, XERIKT 3.

o Uy = (Uy; a:}\, ..., x%): local coordinate of M

o V\ CUy: BXFOAVNY bNRRRES (DFED Vy, Cc Uy, AT 1)

o M = J, Vo DD, {Ux}a I& locally finite open covering of M. (DFD, FRD
r € MIZDWT, 2 DEV T, UNU, # 0 &7%2 )\ IFERME)

. J

DO &L57% Vv, DEFEEICEL T, Z8ED 2nd countable TH 2 Z EH5. ( 2nd countable =
para-compact) RTcEENS A IFIBET LS.

T-BFABRMED SEED compact A C M ICXH LT, ANU,#2 %% )3 BIRTH 3.

Proof. & LERICKR D5, 2 x,€ ANU,, (i=1,2,...) DBINB. A compact BDT, H3
r \CUNER T B8R {z;, } BEND. Tz DERDAFEV ICDOWT, VN Uy, #9 HEXT
{(\} DIREICFET S O

MUF U\ LDOEEIZ (2},....27) L a e 254 IZDWT,
0 \™ o\
e () ()
A (%Ui oy
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Flepe (M), Ne A, £ € Z>0 IZDWVWT,
lll§ := max {| DS prs(@)| | @ € Va, J, |l < €}
RBICp € DF(M), € € Zso ICDWT,
el := max [lpll}, = max {| DS px.s(@)| | @ € VA, J, A, |a] <2}

9% . N5l seminorm THB.

Lemma 2.8.8. {V\, C U,} ZEET 3. DK

{II-15 1A e A, £>0}
\& separating family of seminorm on EF(M) T&H D, BICEDTAIHE (2.8.3) LR LAE%
EDHB.

- J

Proof. Seminorm T2 CZ &IET <ICHhH 5.
V(X Le):={pe M) el <e}

9% . m3CLilE
{ m V()\Z‘,&',ﬁi) | )\i EA, Ei 20, £; >0}

finite

H¥local base at 0 T#H3 Z r xntIERLL.
V(A L e) D open THDZ &I, FIFRB R res : EF(M) — EF(UN) IC& 2T,

{p ey |llely <e} c W)
J

@ pullback IC% 2D TR,

FEDO0 eV C E¥M) &3 open IZDWT, %3 N > 0 & compact subset Ky = Ky U
KN72U~~'UKN7N _(‘-‘35?—(,

pn(p) == max {[D%;(z)| | z € KN, J, |a| < N}.

ELIEE, VIE{pe (M) | pn(p) < +} ZBT. 2T KN C Uipinite V. ZED, L <N &

ACEE {o[mr<3hev
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DO WR T O

Corollary 2.8.9. compact A € M IZDWT, {||-|¥ | £ > 0} |& separating family of
seminorms on DX (M) THD, BCMHEZEDS.

KE(M)IZ2WTH, {||-|© | £> 0} 2ZZNIEEHROERIESNS.

Proposition 2.8.10. {V, Cc U,} ZEE7 5.
1. {@i} MDE(M) T Cauchy 5 TH 2 &lF, 3 compact BREE AC M T{p;} C

Dk (M) hD
lim (g — @l =0 V=0
1,j—00
MDD L L[EHE.
2. i — ¢ in D¥(M) &, B compact BDEE AC M T {p;}U{p} Cc DY(M) 1D

lim i — ol =0 Ve 0.
1— 00

MEDIIDC L LFE.
3. DF(M) & complete.

KE(M)IZ2WTh, {| - |0} 2Z Z MERED ERNESNS.

Proof. [(1)] {¢i} Cauchy FiF bounded T#H 3. &>T2.86&D, $3 compact AC M TH>
T, {pi} CDE(M) €53, ThED

{¢i} Cauchy !l in D*(M)
= JA C M compact s.t. {¢;} C DX(M) hD Cauchy % in DX (M)
S 3A C M compact s.t. {¢;} € D&(M) hD lgn lpi — il =0 V£>0.
8. i,j—00
[(2)] {@i} U{p} I& bounded & D, (1) &E#k.
[(3)] (1) & DE(M) & complete &b, EED Cauchy FFUINKT 5. O

Definition 2.8.11. EFHFEER T : D¥(M) — C DT &% k-dimensional current on M
WS, %5 distribution (& 0-dimensional current D &% & 9.

D}, (M) := { k-current on M } = Homyop Covect sp (Dk(M), (C)
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Ke(M) == Homyep covect sp (K¥ (M), C).

Proposition 2.8.12 (cf. 1.8.11, 1.8.13). Y % locally conver {itg C-NZ ~ILZERME, T :
DF(M) —» Y Z CIREIBRE 5. RIIFETHS.
(a) T & &
(b) T & bounded, DED bounded set %Z bounded set IC2DF .
(¢) @i — 0 in D*(M) %251, T(pi) =0 inY.
(d) FEE®D compact A C M IZDWT, T’D’j‘(M) : DE(M) — Y |k
(e) (Y =C DBEDH) FED compact AC M IZDWT, 3 (>0,C>0HhH>T,

(&

IT()| < C-lell®  for Vi € DE(M).

KE(M)IZ2WTh, £ =0 DHEEINUIRAROERIESNS.
Proof. [(a) & (b) < (¢) & (d)] (a), (b), () DERICEVT,
DF(M) — DY(M) T Tlpk (ar)
ICEDBX-ERE (a)a, (b)a(c)a €T 3. 2.8.5 &0 DX (M) I metrizable & D 1.4.2 kD,
(a)a <= (b)a = (c)a
¥1%. £722.86 (c) 5
(d) BBRII <= VA C M compact, (a) 4D BRIZ

%%, £oT(a) & (d) D ENEICHED. ERICLTINSIE (b) P (c) CAEEHS.
[((e) = (d)] Y =C &93. compact ACM Z#Z%. IRELD £>0,C>0hH>T,

IT(p)] < C-lg|l* for Ve € DE(M).

Ve >0 XL,

vi={pedhan | el < =}

C
rH<L, ThIE0%ZEEL openin DE(M) THD,

p eV = |Tlprapp)| <e
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[(d) = (e)] A C M compact £ 3L, RELD T|D§(M) (&R KoT289M5,4>0,6>0
hH->T,
T({p € DA(M) | llo] <e}) c {zeC ||z < 1}.

K> TEED ¢ € DE(M), ¢ #0 XL,

9
T (5i5m¢)| <1
7 (o

THEIDTEELT, T(9)| < 2o|f &%B3. £oTC =2 HIHIRL. O
Remark 2.8.13. k dimensional current D; (M) D C &% dim M — k degree current £H LV (D
BmHOPPILWL)

Z € H,(M,Z) DTTIITER T2 LT, D (M) Dt a3, (TNhYdimensional” DEER & BH
N3) £fodim M — k RMPFHRIIABEEZ L > TEDT B L TDL(M) DTLERB.

2.9 AL >bFDorder & order 0 AL > kDEHDIT

| EHeE M % m RIT 2nd contable BZFRIKE §3.

NG R S
Em_k(M) — ,C;C(M> = Dk(M>0rd=0 — Dk(M)ordﬁl — Dk(M)

loc

FLTIND' M ORI CARY FILERID sheaf TOTLITHBEZRT.

Definition 2.9.1. D) (M) ICfitE%
{evp : Dp(M) = C | p € D*(M)}
IZB89 % weak topology Z ANS. DFD
{ev;ll(Bl) N---N ev;ll(Bl) | ©1,...,01 € Dk(M),O € By,...,B; C C open ball }

% local base & 3 2tE%x AND.

.

Remark 2.9.2. CHISBRNRRBRMUETH 3. ROBMEZEHISHHS.

T, =T (i— o0)
& YU =ev ! (B))N---Nev,}(By),3N, ¥n >N, T, =T € U
> VU =ev, [ (B1)N---Nev,(By),3N, Vn > N, T,(p;) — T(p;) € Bj(Vj =1,....,0)
> Yy e D¥(M), Ye > 0,3N, ¥n > N, |T,(¢) — T(p)| < e
= Vo € DMM), Ti(p) = T(p) (i — )

)n-
)n-

~— —
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T F&%SBU C M ICXL, restriction map D} (M) — D (U) %=
T (Dk(U) < D*r) L c) = T|y

CHUEEHTA C-linear map ¥ 3.

Lemma 2.9.3. U C M +— D,(U)IC&>T, M LDE CRT MILERBD sheaf ZE
3.

Proof. {Uy}xea locally finite open cover of M, {{\}renl DD E T B.
[1.] T €D, (M), T|ly, =0\ A&5IE, T=0%R9. THUF o € D¥(M) IZDWT,

T(¢) =T(;ww) = %jT( by ) = ;%wm =0

N~
EDF(Uy) =0

2] Th € Dy(U) B
Tilvanv, = Tulusnu,

R5IE, $3 T e Dy(M)BB>T Ty, =T\ LRB L.
T €D, (M) %, o € DF¥(M) IZxt L

T(p) =Y Ta(tr- )

X ‘T/—/
BRCZBFEWVWTO

CEERTD. 95, T |F C-linear TH5B.
H7= o 0 (i > 00) DEE, 2810 05H3 A C M AN FHBT, Supp(es) C A DD,

T(e:) = Talthaps) 50 (i — o0)
A
3. (CDi— ook Supp(pi) CABDT, MO TICEIND. ) &> TT IFEH.
7z o € DF(UY) ITRL,

T@=Tl e ) ST (e) = Ta (3 ) = Tale)
H H

GD’“(U)\QUH) TA‘UAHU#:TMUAHUH K

&2TT|y, =T\ THO, D I& M ED sheaf TH 3. O
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Definition 2.9.4. T € D} (M) Horder </ THBD I, AROAVNI b AC MIZDL
T, H23IC>0DH>TRE®BLIL

IT(p)| < C-lell® Ve e DY(M).

F/eThorder ¢t THBZ &%, T Horder </ HDorder </ —1TIFRVWELTEDS.

Remark 2.9.5. CHUIBESDEWDAICLSHRV. THIEZODORWME (V) C Uy}, {Vi C Uy}
D, ZRUTHIET B norm & |||t ot TR L, FEDAVNI M ACMIZDOWT, %3
AD > 0 B> T

lell“ < D-lgll Ve e DE(M).

Ex5DT.

Lemma 2.9.6. 1. {Ux}xea locally finite open cover of M £ 9L E

T e D, (M) & order <! <= T|y, |& order <l Y.

2. T, € DI (M) order < £, T; =T (i »00) DEET H order < L.

Remark 2.9.7. EOE5E2.9.6 I3RHE > TWD. T4 [NO] DBEARFERICH > 7=FRTH S 1, R5E
hii72 & #& < % > TL\fz. Banach-Steinhaus % DX (M) IZfE>TW3HY, ' F-space THWI L
nN5<3%.

RN T, = n(d1n, — d0) &I B, CHIER LD distribution T order I 0 724°, RIL 6'(0) &
WS distribution ICYNER L T, order I35 &5 1 &R 3.

Proof. (1) = DFEERIZAAS Y. « ZRT. {V)\} Z1DRENCTS. RELD, VA : cpt. IC) >0
T(r- @) < Cx-ngll® Vo € Di(M). (2.9.1)

TET,ANUNAD BB AE N, Ay EBE, A Ay BAATI g =0THB. 0T

N
C:=) Cy,
i=1

EHITIE,

N N

Z (x| < Z o lonell” < O el

2.9.1

T, =

A compact

N
> T (W)
=1

(2) X® Banach-Steinhaus theorem(— kB R4 EIE) ZFES.
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Theorem 2.9.8. [Rud, Theorem 2.6] X %& F-space, D& DMENRY ~LZERFTHRMEL
compatible 78 complete invariant metric ZRFDO2HDL L, Y ZUMERT MLEBETS.
I' C Homuop vect sp(X,Y) €T3, x € X ICHLT,

I'(z):={Az) |AeT}CY

MY ET bounded 7251, T & equi-conti, DEDFEED 0DFFEOc W CY ICDWT, H
B2AFE0ecV CcXHH-T,
VAeT = AV)CW

hE X = (DEM),||-]|),Y =C, T ={T;}; ICAW3. ZCT, pc DE(M) HSIE, RELD
Ti(p) = T(p) (i — 00) 78D T, HFI

{Ti(¢) | i € Z+} C C bounded

T# 3. Banach-Steinhaus theorem(— kB R MEIE) & D, ' IF equi-conti TH 3.
2.8.12 (d) = (e) DFEER & [ABRIC

) 2
W={zeCll<1},  V={peDi0|lel'<c}, C:=2

reBL
Ti(p)| < C- |l for Vi, Y € DY(M).

&oT, Vo € DE(M) IZHL,
T() = Ti(#)] < Il for i > 0.
rrdy,
IT(@)| < IT(¢) = Ti(@)| + ITi(@)] < el + C - llell” = 1+ Ol
E£oTTH order < TH5. O

2.9.6 h'5 D;c,orderge C Dy, & closed fitf C NT R ILZEREH 572 % subsheaf THD.

T KL(M) — D,(M) %
T (Dk(M) < K*(M) 1><c>

cont.

ELTEDS. TNILER CREETEzorder = 0 T$H3.(2.8.9 DFE DHBR) restriction map &
HARBRDT, sheaf & LTDEER K}, — D), oo DEDS.
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Lemma 2.9.9. K} — D} i..—o {# C T MILZEBOD sheaf DRAEZE5Z 3.

Proof. M =U C R™. ARELTRW (T IS DL(M) C [[DL(UN) 1ok T Dy (M) Ohzt8iE
[1 D}, (U DEAAIAE) £ %55 = EES.

T € D} o iorco(U) £EB. TTLIFRDEED.

7
~
~
~
3!

-
-

DRU) —L C
KMU)

pe KKU)ZED, p =3 psda’? £EL. 388 J L, 2.6.7([Rud, Definition 6.31]
7=D) D5 test function D Cauchy 5  {p; ;} ¢ D°(U) TH> T,

lim ;7 = ¢y in K°(U)
1—00

CRBHDHEND. €T,
i = Zg@iJ d.’EJ S Dk(U)
J

EHL L, ThE DF(U) @ Cauchy FITH > T {T(p:)}: B F7=C LD Cauchy FJ& %3,
ZCT e KUY IZDWT,
T(p) := lim T(g)

EERTD. U {pi} DEDFICELSRV. BERSIE, ZDD Cauchy 5l {p;}, {i} ITDWT,

@i.g— @iy —0 (i = 00). = ¢ —@; = 0 (i = o00). T(pi) = T(g}) — 0 (i = o0).

=
T
83D THS. &> T C-linear mapT : K*¥(U) - CHERINS.
B ERT. AN RERACUIDOVWT, Ca>1%

IT(W)] < Callwll® Wy € DL(U) (2.9.2)

EBBHDETS. (CNET € D ge—o(U) BOTENSD) $5L ¢ € K5(U) IZHL, 3
ACABRBZIAVNY RERY, {p;} C DY (U) T, vi — ¢ (i — 00) &% Cauchy FIN\FET 3.

T DEE L Cauchy FH 5

T(p) =T(i) =0 llpi—l® =0 (i — o00)
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BDTi>0cdhid

T(p)] < |T()=T(0)l+IT()l < lel®+HT(e)| < llel’+Calleill® < (2Ca+1)-|l¢ll°.
>0 above 2.9.2 lleill0<2]lp||°

IN&ED—EMbbhH 3. CHRERBENVZ T O

Remark 2.9.10. K' [&1) —XORITEIEH 5 Radon HIETEZX 5N3B.([NO] BE) 4FIC order0 D

RIS Radon BIE X [A—RTE 3.

2.10 Current Of) - ;@&

Definition 2.10.1. U CR" =H&ES 9 3.

LL . (U):={f : U — C : Lebesgue measurable & locally integrable} / o

£9%. T T locally integrable” ZERD AV NI MEG A C U HDWVWT [, |fldu < 400
ELTEDS.
[E4xIC }

LE (U) = {w = wydz’ kform | w; € Li, (U)
J

ELTEDD. INBIFCART MILZERICKRS.

1] LR U) — KL(U) w>—>[w]:<p»—>/Uw/\<p (0 € K5(U))

EERTD. CNIXCREBEHTHS.

Proof. f € Lie(U) W f=0<= [, |fldu=0TH3 L &#BNVHT. CCIRETRY O

Definition 2.10.2. M: BT DIFAIBERZHRIKRIC DOV T

locally

LY (M) := {w = Zuudz‘], wy € LIIOC(U)}
J
EF 3. Ligo(M,A*T*M) £HM<
Xl M EDCARY ILERBOD sheaf Z

Lf.: (UcM)— LE_(U)

loc
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[ ELTERTS.

HL&WM%%KHM)w%WAWH%Awa (o € K*(M))

3. [w] e K(M)IZBRBDIERDEED:
(MCcUhZV\DL1DREILTS.
Kk (M) IcoW\WT

C:= > Z/ [haw. | dp

ANVanA£s J

|/ﬁwA¢r \23/’ baw A )] < Clla]°

eHlL

ek
BT[] LF — K 13 C R M ILZERED sheaf DE & 3.

Definition 2.10.3. M: m XytA T DI RIGEA DK, N C M [AZF DT 0I8E k R7oEAED
PNERIKE T S.
g3,

mﬂmm—w:mw:/wN
N

CEET B CNIGERS CIRRIB/RICAD [N] € K (M) £ 53,

Proof. {V\ CU\I\ & NNUy ={aFl =...=2m =0} £ h3L5I23. $5& N QOEER
BEIE {(NNUy, 2!, ... 20}, R B.

pe KK(M)Z =3 ,prsdx’ on Uy, &RTL

elv=" D papda”®,
Jo=(1,2,....k)

LTS, C = D AVANAL£D w(NNANV,) chidk

[os 5

X ANUZ#£D Jo= (1,2,...,

baors, dz’| < C - o]
NNUy
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Definition 2.10.4. M: m X7TEE DIFEIRERZRKIA, DF (M) := Dy (M) EHL. (m—k

%z degree £\ D)

TeDP(M), a € EY(M)IZXFL, TAa, a NT € DPH(M) ZERDLSICEET S.
(T'Na)(p) :=T(aAyp) Vo € D"PTY(M).

aANT = (—1)PT A

FIZEVWTTAa D ERTHZI L ZRTEL. GEALS T D order B B SIE T A a D order
blrird.)

Proof. AN h&$2L, TDEEDS
3C > 0,1 € Zst. |TW)| <Clv|" Y € DFP(M).
THRLEED p € DY P YM) ICHL,
(T Aa) (@)l = T(ahg)| < Cllan g
BRDIID. KoTHEI |an ol < o) ZBNIZEL.

a:ZaMdmI, @chp)\Jda:J on U,
I J

L93L,
alp= Z a,\fgoudxl/\dx‘]

1,J
INJ=o

5%, CCTEEDS
e A | :max{‘D’B(a)J«p,\J)(a)‘ ‘ NI, |8l < aeﬁ}

4 7=y VAN S

DP(axroas) =Y Cgs(D’anr) (D))
0<6<p

%% Cys B$pBDT
C'i= #{(1,1,8) | INJ =2, 8] < 1} -max {|Cas D'ax(a)] | 0 <6 < B, |8 <1 a€ Wy}

By,
lae A ll < 'l

CIRBDTERSD. O
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EE2.104 IIBEDOABOILEKICE->TWS., Flhwell

loc

(M), a € E9(M) IZDWT
WAa=[wAa] €K?PT(M)

£5%B. Thid g e KM ra(M) 122\ T

(na)e) 5, Wlene) o [ wn@ne) 5 lde)

Definition 2.10.5. AM#5 d : DP(M) — DPHL (M) ZRDELSICEET 3.
(dT)(p) == (=P 'T(dp), € D" P7HM).

U ||de||! < Cllp|I'tt BD T order< I DAL > b & order< I+ 1 DALY T,
d =0DEE T % closed current &LV,

welP(M) 9. dw]=[dw] THS.
Proof. p € D" P Y M) T BL

dwA @) =dwAp+(—1)PwAdp

TH3. £oT,
(dwD(p) = (1" 'wlldp) = (-1)F 1/Mw 9 e |, N0 = [dw](e)-

O

N C M REDIFARe k RIS D ZHIA & § B & [N] I closed current £ 3.

Proof. ¢ € D" k=1(M) IZDWT

_ (_1ym—k—1 _ (_1\m—k-1 _
NN, = ("N, = 0 [ del =

O

d:DP — DPTL (L sheaf & L TORE B/ E 43

Proof. U Cc M ZHESG Y9 5. d & restriction map E AT CHERTHS. > TdIck>T
DP(U) — DPTHU) s E T RIER W o € D" P 1 (M) £ LT, ev,: DP(U) - C ZRATE
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&L, B.cCZelriff LT

d (ev;'(B.)) ={T € DP(M) | e, (dT)| < e} = eszpl(Be).

CIRBDTULR T, O

d(T'Na)=dIl' Na+ (—1)PT A do.

AR IID.

Proof. p € D" P97 Y (M) & LT,

dI'na)(p) = dT(ahy)

= — p_l
2.10.5 ( 1) T(d(a A SO))
> = — 1P (da A ) + (=1)PFIT (o A dp).
form DML form DOAMS ( ) ( 90) ( ) ( SO)

&oT

d(T' N a)(p) — (dT A a)(p) = (=1)PT(da A p) (=DP(T N da)p)

2.10.4

Definition 2.10.6. U C R" A&&, p XRAL > T e DP(U) £ 5.
J=(1<j<-<jp<m)IZDVWTORAL >+ (BEK)T, e D) %

T;:D™(U) - C, fdz'A---Adx™ — sgn(J, J) T(f dz’'*)

ELTEDSD. CCTJUE(L,...,n) D5 JEZEDBRVWEHDE L. sgn(J, J°) IFiBH
(1,...,n) = (J,J°) DFB LT3

T=>,T;ndx’ £%%. DED ALY MIBEBHREOD form 43, UE Tyda’ = T; A dz’
rEL.
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Proof. Y ; Tydzx! DFZRBEALTW. o =Y prdz® € Dy, (U) IZDWT

(Z Ty de> () =Y Tylda’ Ap)
J J
= ZTJ(QOJc dl‘J AN dJTJC)
J

= ngn(J, J9) TJ(ngcdxl A
J

dz’ Ndx?=sgn(J,J¢)dx A---Adx™

= ) sen(J, TP T(pge da’)
T; DEE 7

=T(p).

dr =3, ZLda' Nda! THB.

Proof.
dT = d Tydz’ | = dTy Ada’.
et () = S

THZOT, UELD N
aT;
=1 8x’
ETRIERV. 2FD, p=00HG (THORALVH) THZELTRL.
é/“(P:Zﬁﬂpidxl/\.../\d/m\i/\.../\dxm *¥3Yr,

dT; = dx’

ozt ozt

i=1

=1

L7=A'> T,

m

dT(p) = —T(dp)=-T <Z:(—1)’13902Z det A A dxm> .

ox
i=1
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T

)

( - dﬂ) ® (dz' A )

i=1

Il
%3 Q

@
Il
=

I
]
S

S

, ((—1)i_1 @i drt A A dwm>

J:-Z

@
Il
—

Il

s
Il
—

T ((—1)i_1((2<$ dz' A A d:cm> .
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