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Chapter 1

超関数の定義

Introduction

Ω ⊂ Rn を開集合として次を定義する.

• C∞(Ω) := {ϕ : Ω→ C | ϕは C∞級 }
• D(Ω) = {ϕ ∈ C∞(Ω) | Supp ϕ が compact}

Distributionとは Λ : D(Ω)→ C でC-線型かつ連続となるものである. ここで, 連続とは”D(Ω)上
で ϕi → ϕならば Λ(ϕν)→ Λ(ϕ) ”となることを意味する.

そのためには, D(Ω)に次を満たす位相を入れる必要がある:

D(Ω) で ϕi → ϕであることは, あるコンパクト集合K ⊂ Ω があって, Supp ϕi ⊂ K であ
り, 任意の α = (α1, . . . , αn)について, 一様にDα(ϕi − ϕ)→ 0となる.

(野口-落合の本 [NO]では, これが既知として書かれていた. ただ収束からは位相がただ一つに定
まらない.) この章では, D(Ω) に収束が上を意味するような位相をいれる.
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1.1 Topological vector spaces

K = R or C, | · |を絶対値とする.

Definition 1.1.1. X をK上のベクトル空間, τ をX の位相とする.

(X, τ)がtopological vector space(位相ベクトル空間)とは次を満たすこと.

1. (T1条件) 任意の x ∈ X について, {x} ⊂ X が closed.

2. 加法X ×X → X, (x, y) 7→ x+ y, スカラー倍K×X → X, (α, x) 7→ αxが (積位相
に関して)連続.

Remark 1.1.2. 位相ベクトル空間はHausdorff.

Proof. f : X × X → X, f(x, y) = x − yとおくと (2)より連続. (1)より {0}は閉集合. よって
∆ = f−1({0}) ⊂ X ×X も閉. よってHausdorff.

Definition 1.1.3. X: K上のベクトル空間. 以下の用語を定義する.

1. 部分集合E ⊂ Xがconvexとは, 任意の t ∈ (0, 1)について, tE + (1− t)E ⊂ Eとなる
こと. (もっと具体的に書くと, 任意の x, y ∈ E, t ∈ (0, 1)について, tx+ (1− t)y ∈ E
となること.)

2. 部分集合E ⊂ Xがbalancedとは, 任意の α ∈ K, |α| ≤ 1について, αE ⊂ Eとなるこ
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と. このとき 0 ∈ 0 · E ⊂ Eである.

3. XをK上の位相ベクトル空間とする. 部分集合E ⊂ X がboundedとは, 任意の 0を含
む開集合 V ⊂ Xについて, ある 0 < t0 ∈ Rがあって, 任意の t ≥ t0について, E ⊂ tV
となること.

4. d : X × X → R≥0 を X の距離とする. d がinvariant metricであるとは, 任意の
x, y, z ∈ X について, d(x+ z, y + z) = d(x, y)を満たすこと.

定義がややこしいが, convexや balancedな集合はRnの open ballの代わりの役割を果たしていく.

Remark 1.1.4. Convex, boundedは translation invariantである. つまり, Eが convexや bounded

ならば, 任意の a ∈ X について a+ Eもそうなる.

Proof. 以下E ⊂ X, a ∈ X とする.

[Convexの場合] E convexとする. 1.1.3から任意の t ∈ (0, 1)について, tE + (1 − t)E ⊂ Eであ
る. よって任意の t ∈ (0, 1)について

t(a+ E) + (1− t)(a+ E) = a+ tE + (1− t)E ⊂ a+ E

となりいえた.

[Boundedの場合] E boundedとする. 1.1.3から 0 ∈ V ⊂ X openがあって, 任意の t� 0につい
て1, E ⊂ tV である.

よって示すことは任意の t � 0について a + E ⊂ tV である. これは任意の t � 0について
1
t a+

1
tE ⊂ V を示せば良い. そこで次の合成写像を考える:

F : K ×X × (K ×X)
f // X ×X T // X

(a, x, b, y) � // (ax, by) � // (ax+ by)

すると次がわかる.

1. 0 ∈ V は開集合なので, (0, 0) ∈ U ×U ⊂ Xとなる開集合U ⊂ Xがあって, U ×U ⊂ T−1(V )

となる.(積位相の定義と T の連続性)

2. E boundedより, t� 0について 1
tE ⊂ U . よってある ε > 0があって, εE ⊂ U となる.

以上を組み合わせると (εは必要に応じて小さくして), (0, ε)×{a}× (0, ε)×E ⊂ F−1(V )となる.

これは t� 0について
1

t
a+

1

t
E ⊂ V

を意味する.

1”任意の t ≫ 0について”とは, ”ある 0 < t0 ∈ Rがあって, 任意の t ≥ t0 について”を意味する.
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Definition 1.1.5. XをK上の位相ベクトル空間とする. Xのlocal basisとは, 原点 0 ∈ X
での local basis(開基)のこと, つまり 0の開近傍からなる集合系 Bで,「任意の 0 ∈ U ⊂ X
openについて, ある V ∈ Bがあって, 0 ∈ V ⊂ U」となる集合系のこと.

Definition 1.1.6. X をK上の位相ベクトル空間とする.

1. X がlocally convexとは, X が 0の convexな開近傍からなる local basisを持つこと.

2. X がlocally boundedとは, 0 が boundedな開近傍を持つこと.

3. X がlocally compactとは, ある 0の開近傍 0 ∈ V ⊂ X で, V が compactなものがあ
ること. (通常の locally compactと同じ)

4. X がmetrizableとは, ある距離 d : X ×X → R≥0 があって, dの位相が X の位相と
同じであること.

5. X が F -spaceとは, ある完備な invariant距離 d : X ×X → R≥0があって, dの位相
が X の位相と同じであること.

6. X が Fréchet spaceとは, X が locally convex かつ F -spaceなること.

7. X が Heine-Borel Propertyを持つとは, 任意の closed bounded が compactなるこ
と. (”Rnの有界閉集合はコンパクト”というHeine-Borelの定理から来ている. )

これは後々使っていく. 1.3.1で「locally compact⇒有限次元」や「locally bounded + Heine-Borel

Property ⇒ 有限次元」を示す. なので, locally compactなどは滅多に起こらないということで
ある.

1.2 Separation properties

Proposition 1.2.1. XをK上の位相ベクトル空間とする. K ⊂ Xを compact, C ⊂ Xを
closedとする. K ∩ C = ∅ ならば, ある open set V ⊂ X で (K + V ) ∩ (C + V ) = ∅とな
るものが存在する.

Proof. α : X ×X ×X → Xを α(x, y, z) := x+ y− zとおく. K ∩C = ∅より, K ×{0}× {0} ⊂
α−1(X \C)である. α連続で, X \Copenなので, α−1(X \C)も open. よって, Kが compactな
ので, ある openV ⊂ X で

K × V × V ⊂ α−1(X \ C)

となるものが存在する. よってK + V − V ⊂ X \Cであり, (K + V ) ∩ (C + V ) = ∅となる.
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Proposition 1.2.2. X をK上の位相ベクトル空間とする.

1. C ⊂ X convexならば, C,C◦ も convex.

2. B ⊂ X balancedならば, Bも balanced. さらに, 0 ∈ B◦であるならば, B◦ も balanced

3. E ⊂ X boundedならば, E,E◦ も bounded.

Proof. (0). 証明において使う事柄をまとめておく

1. a ∈ X について fa : X → X, fa(x) := a+ xは同相写像. 連続は明らかで f−aが逆写像にな
るから. 同様に s ∈ K \ {0}について, fs : X → X, fs(x) := s · xも同相写像.

2. T : X ×X → X, t(x, y) := x+ yとおくとき, T は開写像. なぜなら U, V ⊂ Xopenについ
て T (U × V ) = ∪x∈U (x+ V )であり, x+ V は上より開集合であるので.

(1). 示すことは, 任意の t ∈ (0, 1)について, tC◦ + (1 − t)C◦ ⊂ C◦である (C も同じ). t ∈ (0, 1)

を固定する.

[C◦について]. C は convexなので,

T (tC◦ × (1− t)C◦) = tC◦ + (1− t)C◦ ⊂ C

である. T は開写像より, tC◦ + (1− t)C◦は openなので, C◦に含まれる.

[C について]. 次の写像を考える.

F : X ×X f // X ×X T // X

(x, y) � // (tx, (1− t)y) � // tx+ (1− t)y

この F は連続である. よって連続の閉包を用いた同値性2より F (C × C) ⊂ F (C × C)となる.

C × C = C × C なので, 展開すると

tC + (1− t)C = F (C × C) ⊂ F (C × C) = tC + (1− t)C ⊂ C.

(2). α ∈ K, |α| ≤ 1とする. fα(x) := αxとおくと, 連続の閉包を用いた同値性より

αB = fα(B) ⊂ fα(B) = αB ⊂ B

よって balancedである. ( 最後の αB ⊂ BにBが balancedを用いた)

0 ∈ B◦ をさらに仮定すると, 0 · B◦ = 0 ∈ B◦であり, 任意の α ∈ K, |α| ≤ 1についても, α倍が
同相写像であるので, αB◦ = (αB)◦ ⊂ B◦となる. よって balanced.

2位相空間の間の写像 f : X → Y が連続であることと, 任意の A ⊂ X について f(A) ⊂ f(A)であることは同値で
ある.
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(3). E◦が boundedは E◦ ⊂ Eより明らか. Eが boundedを示す. 0 ∈ V ⊂ X openを固定する.

示すことは任意の t� 0についてE ⊂ tV である.

当たり前なこととして, {0} ∩ (X \ V ) = ∅である. {0} compact, X \ V closed より, 1.2.1から,

ある open 0 ∈W ⊂ X で
{0}+W ∩ ((X \ V ) +W ) = ∅

となる. これは, 0 ∈W ⊂W ⊂ V を意味する. (もしW ∩ (X \ V ) 6= ∅なら, その元のW 近傍が
W と交わりをもち, それは上に矛盾する). E は boundedなので, 任意の t� 0についてE ⊂ tW
以上より t倍は同相なので,

E ⊂ tW = tW ⊂ tV

よってEは bounded.

Proposition 1.2.3. X をK上の位相ベクトル空間とする.

1. 0 ∈ U ⊂ X openならば, ある balanced open W で, 0 ∈W ⊂ U となるものがある.

2. 0 ∈ U ⊂ X convex open ならば, ある convex balanced open W で, 0 ∈ W ⊂ U とな
るものがある.

Proof. 以下 δ > 0に対して, Bδ(0) := {α ∈ K||α| < δ}とおく.

(1). f : K ×X → X を f(α, x) := αxとする. これは連続より, f−1(U)は (0, 0)を含む開集合で
ある. よって, ある δ > 0と 0 ∈ V ⊂ X となる openがあって, Bδ(0)× V ⊂ f−1(U) となる.

W := f(Bδ(0) × V )とおく. W ⊂ U は明らか. またW =
⋃

|α|<δ αV であり, X の開集合である.

任意の β ∈ K, |β| ≤ 1 について, βW ⊂
⋃

|α|<δ βαV ⊂ W となる. (|αβ| < δのなので). よって
W は balancedである.

(2). A :=
⋂

|α|=1, α∈K αU とする. (K = Cなら S1のように回転させて合併をとる)

Claim 1.2.4. Aは convex balancedである.

Claimの証明. Convexに関しては (元をとって考えれば)明らか. balancedを示す. β ∈ K, |β| ≤ 1

をとる. βA ⊂ Aを示せば良い. 0 ∈ U より, 0 ∈ Aである. よって 0 · A ⊂ Aである. これより
β 6= 0として良い. すると |α| = 1ならば βα

|β| = 1であるので,

βA =
⋂

|α|=1

βαU =
⋂

|α|=1

βα

|β|
|β|U ⊂

⋂
|α|=1

βα

|β|
U ⊂ A

となる. (|β|U ⊂ |β|U + (1 − |β|)U ⊂ U に注意. 0 ∈ U はここにも使う) よって balancedであ
る.
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このA◦が欲しい convex balanced openであることを示す (命題の主張のW ). そのためには, 1.2.2

より, 0 ∈ A◦であることを示せば良い.

0 ∈ U より, (1)からある balanced open 0 ∈ V ⊂ U がある. V は balancedなので, α ∈ K, |α| = 1

について, α−1V ⊂ V である (|α−1| = 1なので). よって, V ⊂ αV ⊂ αU であるので, 共通部分を
とって,

V ⊂
⋂

|α|=1

αU = A

を得る. V openより, 0 ∈ V ⊂ A◦となりいえた.

Corollary 1.2.5. X をK上の位相ベクトル空間とする. このときX は balancedな 0の開
近傍からなる local basisを持つ.

さらにXが locally convex (1.1.6参照 )ならば, convex balancedな 0の開近傍からなる local

basisを持つ.

Corollary 1.2.6. XをK上の位相ベクトル空間とする. 任意のコンパクト集合K ⊂ Xは
boundedである.

Proof. 0 ∈ V ⊂ X openをとる. 任意の t� 0 についてE ⊂ tV を示す. 1.2.3から, ある balanced

openで 0 ∈W ⊂ V となるものがある.

まずX =
⋃
n∈Z+

nW であることを示す. X ⊂
⋃
n∈Z+

nW のみを示せば良い. f : K × X → X

を f(α, x) := αxとおく. 任意の y ∈ X について f(0, y) = 0 ∈ W である. よって f は連続
なので, (0, y) ∈ f−1(W )となる. これより, ある δ > 0と 0の開近傍 U ⊂ X があって (0, y) ∈
Bδ(0)× (y + U) ⊂ f−1(W )となる. 特に 1

n < δなる nをとれば 1
ny ∈W となる. よっていえた

今K ⊂ X =
⋃
n∈Z+

nW でKコンパクトなので, あるnがあってK ⊂ nW となる. W は balanced

なので任意の t ≥ nについて nW ⊂ tW である. よって任意の t ≥ nについて

K ⊂ nW ⊂ tW ⊂ tV

となりK は boundedである.

1.3 Types of topological vector space

Proposition 1.3.1. X をK上の位相ベクトル空間とする. X が locally compact (1.1.6参
照 )ならば, 有限次元.

特にXが locally boundedかつHeine-Borel propertyを持つ (1.1.6参照 ) ならば, 有限次元.
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Proof. (1). Xを locally compactとする. 定義からある開集合 0 ∈ V ⊂ Xで V が compactなもの
が存在する. 1.2.6から, V は boundedである. よって V も boundedである. よって, {2−nV }n≥1

が 0の local basisになる. (任意の open 0 ∈W について, V boundedなので V ⊂ 2n0W となる n0
が取れるから)

さて 0 ∈ V より, V ⊂
⋃
x∈V (x+

1
2V )である. V は compactより, ある x1, . . . , xm ∈ X があって,

V ⊂ (x1 +
1
2V ) ∪ · · · ∪ (xm + 1

2V ) (1.3.1)

となる. そこで次のようにおく.

• Y :=
∑m

i=1Kxi ⊂ X
• d := dimK Y

• v1, . . . , vd ∈ Y K上の基底.

Claim 1.3.2.

f : Kd // (K×X)d // Xd // X

(ai)
d
i=1

� // (ai, vi)
d
i=1

� // (ai · vi)di=1
� //

∑d
i=1 ai · vi

とおくと f : Kd → X は連続写像. そして, f : Kd → Y は同相写像で, Y ⊂ X はX の閉
集合

Claimの証明. スカラー倍や足し算が連続なので f は連続. また f : Kd → Y は全単射である. こ
れが同相になるのを見るために, f−1を次のように構成する
S := {z ∈ Kd | ||z|| = 1}, B := {z ∈ Kd | ||z|| ≤ 1} とおく (Rdの球面と閉球である) 0 ∈ S で f

連続単射より. 0 6∈ f(S) ⊂ X かつ f(S)compactである. (X は hausdorffより閉集合でもある).

よって 1.2.3から, ある balanced open W ⊂ X で 0 ∈W かつW ⊂ X \ f(S)なものが存在する.

f−1W ⊂ Bであることを示す. もし z ∈ f−1W \Bが存在したとする. 定義から ||z|| > 1である.

Wbalancedなので, f−1W も balanced, よって,

1

||z||
f−1(W ) ⊂ f−1(W )

である. これは z
||z|| ∈ f

−1(W )となるが, ノルムが 1なので, W ⊂ X \ f(S)に矛盾する.

特に任意の r > 0について, f−1(rW ) ⊂ rBである. よって任意の r > 0について, f−1(rW ∩Y ) ⊂
rBである. これは f−1 : Y → Kdが 0 ∈ Y で連続であることを意味する.3 任意の点 y ∈ Y につい

3位相空間の写像 f : X → Y が点 x ∈ X で連続とは, f(x)の任意の近傍 V に対して, ある xの近傍 U が存在して,
f(U) ⊂ V となること.
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ては, 以下の図を考える.

Y
f−1

//

+y
��

Kd

+f−1(y)��
Y

f−1
// Kd

この縦の矢印は同相である. よって, f−1 : Y → Kdは点 yでも連続である. これより f : Kd → Y

は同相.

Y ⊂ X が閉集合を示す. y ∈ Y をとる. X =
⋃
t∈Z+

W (1.2.6の証明参照)であるので, t > 0が
あって y ∈ tW となる. tWopenなので, y ∈ Y ∩ tW である. f−1(tW ) ⊂ tBで f−1 : Y → Kdが
同相なので, Y ∩ tW ⊂ f(tB)である. 最後に tB ⊂ Kdコンパクトより, f(tB)もそう, よって閉集
合なので f(tB) = f(tB)である. 以上をつなぎ合わせると

y ∈ Y ∩ tW ⊂ f(tB) = f(tB) ⊂ Y

である. よって y ∈ Y であり, Y = Y で閉集合である.

証明に戻る. (1.3.1)より Y の定義から V ⊂ Y + 1
2V である. これより

V ⊂ Y +
1

2
V ⊂ Y +

(
1

2
Y +

1

4
V

)
= Y +

1

4
V

となる. これを繰り返して, V ⊂
⋃
n≥1(Y + 1

2nV )を得る. 今 {2−nV }n≥1が 0の local basisにな
ることと, Y が閉集合なので,

V ⊂
⋂
n≥1

(
Y +

1

2n
V

)
⊂ Y = Y

となる. X =
⋃
k∈N kV なので, X ⊂ Y となる. よって Y ∼= Kdなので, X は有限次元

(2). X locally boundedかつ Heine-Borel Propertyを満たすとする. locally boundedなので, あ
る 0 ∈ V ⊂ X で bounded openが存在する. 1.2.2より V も bounded. Heine-Borel Propertyよ
り, V はコンパクト. よって, X は locally compactなので有限次元.

Remark 1.3.3. 上の証明の議論から「K上の位相ベクトル空間 Y が有限次元ならば, Y はKdと同
相である」ことがこの議論からわかる.

もっと強く「XをK上の位相ベクトル空間, Y ⊂ Xをd次元K部分空間とするとき,あるf : Kd → Y

で同相かつK線形なものが存在する」ということもわかる.

Proposition 1.3.4. X を K上の位相ベクトル空間とする. X の local baseが高々可算と
する (特に第一可算である ). このとき次の三つを満たす距離 d : X ×X → Rが存在する.

1. dはX の位相を誘導する.
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2. dは translation invariant, つまり d(x+ z, y + z) = d(x, y).

3. 任意の r > 0について, {x ∈ X | d(x, 0) < r}は balanced.

さらにXが locally convexであると仮定する. このとき距離 dは, ”任意の y ∈ X,, r > 0に
ついて {x ∈ X | d(x, y) < r} が convex”　となるようにとることができる.

Proof. 以下X の local baseが高々可算とする.段階を追って示していく.

(1). translation invariantな距離 d : X ×X → Rが存在すること. 1.2.3より, balanced openから
なる local base {Vn}∞n=1で任意の n ∈ Z+について

Vn+1 + Vn+1 + Vn+1 + Vn+1 ⊂ Vn

となるように取れる. そこで

D :=

{ ∞∑
n=1

cn2
−n | cn = 0, 1で有限個を除いて 0

}

とおく. D ⊂ [0, 1)かつ任意の r ∈ Dについて r =
∑∞

n=1 cn(r)2
−nとなる表示は一意的である. そ

こで, r ∈ D ∪ [1,∞)に関して,

A(r) :=

{
X (r ≥ 1),

c1(r)V1 + c2(r)V2 + · · · (r ∈ D)

と定義する. (下の表示は無限和に見えるが, Dの定義から有限和である). このとき 0 ∈ A(r)かつ
任意の r ≥ 0についてA(r)は balanced openである.

そこで次の関数を定義する.

• f : X → R, x 7→ inf{r ∈ D ∪ [1,∞) | x ∈ A(r)}
• d : X ×X → R, (x, y) 7→ f(x− y)

dは translation invariant かつ symmetricである. (symmetricなのは, A(r)が balancedなので,

x− y ∈ A(r)は y − x ∈ A(r)を意味するから)

Claim 1.3.5. 任意の r, s ∈ D ∪ [1,∞)について, A(r) +A(s) ⊂ A(r + s)が成り立つ.

Claimの証明. r + s ≥ 1の場合は自明. よって, r + s ∈ Dとして良い. r, s, r + sを次のように表
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示する.

r = α12
−1 + · · ·+ αN−12

−(N−1) + αN2
−N + · · ·

s = β12
−1 + · · ·+ βN−12

−(N−1) + βN2
−N + · · ·

r + s = γ12
−1 + · · ·+ γN−12

−(N−1) + γN2
−N + · · ·

Case 1: あるN があって, αi + βi = γi(i = 1, . . . , N − 1)かつ, αN + βN 6= γN となる場合. この
とき, αN = βN = 0かつ, γN = 1にならざるを得ない. (これは要するに以下のように

αN : 1 0 · · · 0 0 1

βN : 0 1 · · · 1 0 1

γN : 1︸︷︷︸
1

1︸︷︷︸
2

· · · 1︸︷︷︸
N−1

1︸︷︷︸
N

0︸︷︷︸
N+1

と, N − 1まで繰り上がりが起こっておらず, N の時に繰り上がりが起こるパターンである. ) 今
M ≥ 2について

αM−1VM−1 + αMVM ⊂ VM−1 + VM−1 ⊂ VM−2

である. 以下M を十分に大きい整数とすると, αN+2VN+2 + · · ·+ αMVM ⊂ VN+1である. よって
αN = 0に注意すると

A(r) = α1V1 + · · ·+ αN−1VN−1 + αNVN︸ ︷︷ ︸
0

+αN+1VN+1 + αN+2VN+2 + · · ·+ αMVM︸ ︷︷ ︸
⊂VN+1

⊂ α1V1 + · · ·+ αN−1VN−1 + VN+1 + VN+1

同様に, A(s) ⊂ β1V1 + · · ·+ βN−1VN−1 + VN+1 + VN+1 であるので,

A(r) +A(s) ⊂ (α1 + β1)V1 + · · ·+ (αN−1 + βN−1)VN−1 + VN+1 + VN+1 + VN+1 + VN+1

⊂ γ1V1 + · · ·+ γN−1VN−1 + γN︸︷︷︸
1

VN

⊂ A(r + s)

Case 2: そのような N がないとき, つまり任意の i で αi + βi = γi が成り立つ時は, 自明に
A(r) +A(s) = A(r + s)である.

この Claimより次の三つがわかる.

(a) r, t ∈ D ∪ [1,∞)について, r ≤ tならばA(r) ⊂ A(t).
(b) f(x) = 0⇔ x = 0.

(c) f(x+ y) ≤ f(x) + f(y).
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特に dはX 上の transrate invariant metricとなる.

上の 3つのことの証明. (a).t ≥ 1の場合は明らか. t < 1 の場合は, t− r ∈ Dであるので (筆算を
考える), 上の Claimから

A(r) ⊂ A(r) +A(t− r) ⊂ A(t)

(b). x = 0ならば
f(0) = inf{r ∈ R>0 | 0 ∈ A(r)} = 0

である. 逆に f(x) = 0ならば, 任意の r ∈ Dについて, x ∈ A(r) である, 特に任意の n ∈ Z+につ
いて, x ∈ A

(
1
2n

)
= Vnである. XはHausdorffで {Vn}n≥1は 0の local baseなので, x = 0である.

(c). x ∈ A(r), y ∈ A(s)について, x+ y ∈ A(r) +A(s) ⊂ A(r+ s)であるので, f(x+ y) ≤ r+ s.

よって r, sに関して infをとれば言える.

また (b)は dの正定値性, (c)は dの三角不等式を表していて, dは symmetric transrate invariant

であることはわかっているので, dはほしい距離となる.

(2). d が X の topology を誘導することを示す. δ > 0について, Bδ(0) := {x ∈ X | d(x, 0) < δ}
と定義する. d(x, 0) = f(x)であるので, f の定義から

Bδ(0) =
⋃

r<δ,r∈D∪[1,∞)

A(r)

である. この表示から Bδ(0)はX の balanced open setである. また B2−n(0) ⊂ A(2−n) = Vnで
ある. これより {Bδ(0)}δ>0はX の local baseになり, dはX の位相を誘導する.

また”任意の r > 0について, {x ∈ X | d(x, 0) < r}は balanced”はすでに示した. よって dが欲
しい距離となる.

X が locally convex ならば, balanced convexとなる Vn をとることができる. よって A(r)も
balanced convex になり, Bδ(0)もそうなる. convexity は translation invariant なので, 任意の
y ∈ Y についてBδ(y)も convexとなる.

1.4 Bounded linear maps

Definition 1.4.1. X,Y をK上の位相ベクトル空間とする. K-linear map Λ : X → Y が
boundedであるとは, 任意の bounded set E ⊂ X について, Λ(E)も boundedであること.

（つまり任意の open 0 ∈ V ⊂ Y について, ある t0 > 0があって, 任意の t ≥ t0 について,

Λ(E) ⊂ tV となること.)
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Proposition 1.4.2. K上の位相ベクトル空間の線型写像 Λ : X → Y について, 次の条件
を考える.

(a) Λは連続
(b) Λは bounded

(c) 任意のXの点列 {xn}n≥1について, xn → 0 (n→∞)ならば, {Λxn | n = 1, 2, . . . } ⊂
Y は bounded

(d) 任意の X の点列 {xn}n≥1 について, xn → 0 (n → ∞)ならば, Y 上で Λ(xn) → 0

(n→∞).

この時 (a)⇒ (b)⇒ (c)は常に成り立つ.

さらに, X がmetrizableならば, (c)⇒ (d)⇒ (a) が成り立つ. つまり上の条件は同値であ
る. 特に 1.3.4から, X の local baseが高々可算ならば, 上の条件は同値である.

Proof. [(a) ⇒ (b)] E ⊂ X boundedとする. 0 ∈ V ⊂ Y openをとる. Λは連続なので, 0 ∈
Λ−1(V ) ⊂ X openである. よってE boundedなので, t� 0についてE ⊂ tΛ−1(V ) である. よっ
て t� 0について Λ(E) ⊂ tV より, Λ(E)は boundedとなる.

[(b) ⇒ (c)] X の点列 {xn}n≥1で xn → 0 (n → ∞)となるものを取る. {xn | n = 1, 2, . . . } ⊂ X

が boundedであることを示せば良い. 0 ∈ V ⊂ Xopenをとる. 1.2.3から, ある 0 ∈ U ⊂ V なる
balanced openがある. xn → 0よりある n0があって次が成り立つようにできる.

• n > n0ならば xn ∈ U . これは xn → 0の定義そのもの.

• ある t0 > 0があって, 任意の t ≥ t0 について, x1, . . . , xn0 ∈ tU . これは 1.2.6の証明から.

(U が balancedはここに使う.)

U は balancedなので, (必要ならば t0 > 1となるように t0を取り替えて), t ≥ t0ならば U ⊂ tU

となる. よって t ≥ t0ならば {xn | n = 1, 2, . . . } ⊂ tU より, boundedである.

[(c) ⇒ (d)] X は metrizableとする. すると X は countable local baseを持つので, 1.3.4より,

translate invariant metric d : X ×X → RでX の位相を生成するものが存在する.

X の点列 {xn}n≥1で xn → 0 (n→∞)となるものを取る. ここで knを

d(xn, 0) ≤
1

k2n

となる最大の自然数とおく. (ただし xn = 0なら kn := n) kn → 0である. dが translate invariant
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なので,

d(knxn, 0) ≤ d(knxn, (kn − 1)xn) + d((kn − 1)xn, 0)

= d(xn, 0) + d((kn − 1)xn, 0)

≤ knd(xn, 0) ≤
1

kn
→ 0

よってX 上で knxn → 0である. (c)の仮定を使って, {Λ(knxn) | n = 1, 2, . . . } ⊂ Y は bounded

である.

さて今から Λ(xn)→ 0を示す. 任意の 0 ∈ V ⊂ Y openをとる. 1.2.3より balancedを仮定して良
い . {Λ(knxn) | n = 1, 2, . . . } ⊂ Y は boundedなので, ある t > 0があって,

{Λ(knxn) | n = 1, 2, . . . } ⊂ tV

となる. kn →∞より, ある n0があって, 任意の n ≥ n0について t
kn
≥ 1となる. 今 V は balanced

なので, t
kn
V ⊂ V となる. まとめると n ≥ n0 ならば, Λxn ∈ V である. よって収束の定義から

Λ(xn)→ 0である.

[(d) ⇒ (a)] X metrizableとする. Λ が 0で連続を示せば良い. 背理法. Λ が 0で連続でないとす
ると, ある開近傍 0 ∈ V ⊂ Y があって, 任意の近傍 0 ∈ U ⊂ XについてΛ(U) 6⊂ V である. よって
X は距離空間なので, 任意の n ≥ 1について, ある xn ∈ X があって, d(xn, 0) <

1
n かつ Λxn 6∈ V

となるものがある. これは xn → 0だが, Λxnは 0に収束しないので, (d)に矛盾する.

1.5 Seminorms and local convexity

Definition 1.5.1. XをK上の位相ベクトル空間とする. 写像 p : X → Rがseminormとは
以下の 2条件を満たすこと.

• 任意の x, y ∈ X について, p(x+ y) ≤ p(x) + p(y).

• 任意の α ∈ K, x ∈ X について, p(αx) = |α|p(x).

Berkovichの文脈では, この seminormは”faithful seminorm”と呼ばれるものらしい.

Proposition 1.5.2. 1.5.1の記法において, 次が成り立つ. ただし pは seminormとする.

1. p(0) = 0.

2. |p(x)− p(y)| ≤ p(x− y).
3. p(x) ≥ 0.

4. {x ∈ X | p(x) = 0} ⊂ X はK-線形部分空間
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5. A = {x ∈ X | p(x) < 1} ⊂ X は convex balanced.

6. p(x) = inf{t > 0 | t−1x ∈ A}である. 以下右の infを pA(x)と表す.

Proof. (1). p(0) = p(0 · 0) = |0| p(0) = 0より.

(2). p(x) = p(x − y + y) ≤ p(x − y) + p(y), p(y) = p(y − x + x) ≤ p(y − x) + p(x), p(y − x) =
| − 1|p(x− y)である. これを組み合わせると言える.

(3). (2)より p(x) = p(x− 0) ≥ |p(x)− p(0)| ≥ 0 なので.

(4). (3)と 1.5.1より.

(5). convexについて. 任意の x, y ∈ A, t ∈ (0, 1)について, 定義から

p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y) < 1

であるので. balancedについては, 任意の x ∈ A, α ∈ K, |α| ≤ 1 について

p(αx) = |α| p(x) < 1

なので αx ∈ Aとなる.

(6). x ∈ X, t > 0 に対し

t−1x ∈ A ⇔ p(t−1x) < 1 ⇔ t−1p(x) < 1 ⇔ p(x) < t

であるので, inf{t > 0 | t−1x ∈ A} = p(x)が言える.

Definition 1.5.3. X を K上の位相ベクトル空間とする. P をX の seminormsの族とす
る. P がseparatingとは, 任意の x ∈ X \ {0}について, ある p ∈ P があって, p(x) > 0とな
ること.

Theorem 1.5.4. XをK上のベクトル空間とする. P をXの separatingな seminormsの
族とする. p ∈ P , n ∈ Z+について, V (p, n) := {x ∈ X | p(x) < 1

n}とおき,

B := {V (p1, n1) ∩ · · · ∩ V (pr, nr) | r ≥ 0, pi ∈ P , ni ∈ Z+}

とする. このときX の位相 τ で次を満たすものがただ一つ存在する.

• (X, τ)はK上の locally convex 位相ベクトル空間.

• Bは (X, τ)の local base.

さらにその位相ベクトル空間 (X, τ)は次を満たす.
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(a) 任意の p ∈ P , p : X → Rは連続.

(b) 任意の部分集合 E ⊂ X について, ”E が boundedである”ことは, ”任意の ∈ P につ
いて, p(E) ⊂ Rが boundedである”ことと同値.

よって separatingな seminormから, ただ一つの locally convex 位相ベクトル空間の構造が定ま
り, それは seminormが作る open ballが local baseとなる. boundednessは pからわかる.

またもし P が可算ならば, B は可算. よって 1.3.4より (X, τ)はmetrizableである. 特に Fréchet

space, つまり locally convexかつ complete invariant metricを持つ (F-space)空間となる (1.1.6参
照.)

Proof. τ を”Bの元を並行移動したものの合併集合全体”とする. つまり

τ :=

{ ⋃
i∈Λ∈A

(Bi + ai) | Bi ∈ B, ai ∈ X

}

とする. ただし Λ = ∅の場合は ⋃i∈Λ∈A(Bi + ai) = ∅ と定める. この τ が位相になることを示
す.(これが示されれば唯一性も言える.)

(1). ∅ ∈ τ は自明. X ∈ τ もX =
⋃
x∈X(V (p, 1) + x)より.

(2). Uλ ∈ τ ⇒
⋃
λ Uλ ∈ τ は τ の定義から.

(3). U1, U2 ∈ τ ⇒ U1 ∩ U2 ∈ τ . これはかなりややこしいがので丁寧にやる.

U1 =
⋃
α∈Λ

(xα +Bα) U2 =
⋃
β∈Λ′

(yβ +B′
β)

とする.xα, yβ ∈ X かつBα, B
′
β ∈ Bである. すると

U1 ∩ U2 =
⋃

α∈Λ,β∈Λ′

[
(xα +Bα) ∩ (yβ +B′

β)
]

よって示すべきことは,x, y ∈ XかつB,B′ ∈ Bについて (x+B)∩ (y+B′) ∈ τ である. τ は平行
不変より, y = 0 としてよい. さらに以下のようにB,B′を定める

B := V (p1, n1) ∩ · · · ∩ V (pr, nr) B′ := V (p′1, n
′
1) ∩ · · · ∩ V (p′r′ , n

′
r′)

w ∈ (x+B) ∩B′とする. するとmi,m
′
i′ ∈ Z+を

1

mi
<

1

ni
− pi(w − x)

1

m
′
i′
<

1

n
′
i′
− pi′(w)

と定めると, w+
⋂r
i=1 V (pi,mi)∩

⋃r
i=1 V (p′i,m

′
i) ⊂ (x+B)∩B′となることを示す. (なおこれが
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示されれば (x+B) ∩ (y +B′) ∈ τ は wに関して合併集合をとれば言える. )

ξ ∈ w +
⋂r
i=1 V (pi,mi) ∩

⋃r
i=1 V (p′i,m

′
i)とする. 示すことは,

pi(ξ − x) <
1

ni
pi(ξ) <

1

n
′
i′

である. 1つ目については, w ∈ (x+ B)と ξ ∈ w +
⋂r
i=1 V (pi,mi)より, seminormの劣加法性を

使って
pi(ξ − x) = pi(ξ − w + w − x) ≤ pi(ξ − w) + pi(w − x) <

1

ni

である. 二つ目は w ∈ B′と ξ ∈
⋃r
i=1 V (p′i,m

′
i)を使って上と同様にしめせる. よっていえた.

これより次がわかる.

• 平行移動は (X, τ)で同相写像. これは U ∈ τ ⇒ U =
⋃
iBi + ai の形に書けるので.

• 任意の p ∈ P について, p : X → Rは連続. これは 1.5.2より |p(x+ y)− p(x)| ≤ p(y)
から,

p(x+ V (p, n)) ⊂ (p(x)− 1
n , p(x) +

1
n) ⊂ R

であるので.

• 任意の V ∈ Bについて V は balanced convexな 0の開近傍. これは seminormの定義
からわかる.

以下残りの事柄も示していく.

[B は (X, τ)での local baseなること] 0 ∈ U ⊂ X open, つまりU ∈ τ とする. 定義からある x ∈ X
と pi ∈ P , ni ∈ Z+があって

0 ∈ x+ V (p1, n1) ∩ · · · ∩ V (pr, nr) ⊂ U

である. 特に pi(x) <
1
ni
なので, 1

mi
< 1

ni
− pi(−x)ととると, 位相の時の議論と同じくして

0 ∈ V (p1,m1) ∩ · · · ∩ V (pr,mr) ⊂ x+ V (p1, n1) ∩ · · · ∩ V (pr, nr) ⊂ U

となる. V (p1,m1) ∩ · · · ∩ V (pr,mr) ∈ Bなので, Bは 0の基本近傍系となり, つまり local baseで
ある.

[(X, τ)はT1空間なること]平行移動は同相写像なので {0}が closedを示せば良い. Pは separating

より, 任意の x ∈ X \ {0}についてある px ∈ P があって px(x) 6= 0である. よって, 1
nx

< p(x)と
なる自然数をとれば, 1.5.2より

X \ {0} =
⋃

x∈X\{0}

(x+ V (px, nx))

19



であることがわかる. よってX \ {0}は openで, {0}は closed.

[足し算は連続なること] X ×X → X, (x, y) 7→ x+ yとする. (x, y) ∈ X ×X で連続であること
を示せば良い. Bは local baseなので, 任意の U := V (p1, n1)∩ · · · ∩ V (pr, nr) ∈ Bについて, ある
W ∈ Bがあって,

(x+W ) + (y +W ) ⊂ x+ y + U

となることを示せば良い. そうなるW として V (p1, 2n1) ∩ · · · ∩ V (pr, 2nr) を取れば良い.

[スカラー倍は連続なること] K×X → X, (a, x) 7→ αx (a, x) ∈ K×Xで連続であることを示せば
良い. Bは local baseなので, 任意の U := V (p1, n1) ∩ · · · ∩ V (pr, nr) ∈ Bについて, あるW ∈ B
と, a ∈ Kの半径 δの開球Dがあって

D · (x+W ) ⊂ ax+ U

となることを示せば良い. これはW = V (p1,m1) ∩ · · · ∩ V (pr,mr)とおき, a+ α ∈ D, ξ ∈ W に
ついて.

aξ + α(x+ ξ) = (a+ α)(x+ ξ)− ax ∈ V (p1, n1) ∩ · · · ∩ V (pr, nr)

となるように δ,miが取れれば良い. これは |a| 1mi
< 1

2ni
となるようにmiを十分大きくとった後に

δ(|x|+ 1
mi

) < 1
2ni
となるように δを十分小さくとれば良い.

以上の結論として次が言える.

1. (X, τ)はK上の位相ベクトル空間.

2. Bは (X, τ)の balanced convex setからなる local base.

3. 上の 1,2を満たす位相 τ は唯一.

4. 任意の p ∈ P について, p : X → Rは連続.

最後に boundednessの特徴付けに関して. 「E ⊂ X が boundedである」ことは, 「任意の V ∈ B
について, t � 1ならば E ⊂ tV である」ことと同値. それは「任意の p ∈ P について, n � 1な
らば E ⊂ tV (p, n)である」ことと同値. これは「任意の p ∈ P について, p(E) ⊂ Rが bounded」
と同値である. (E ⊂ tV (p, n)は p(E) < t

n と同じ意味であることに注意)

1.6 Cauchy Sequence and Completeness

Definition 1.6.1. X をK上の位相ベクトル空間とする. {xn}∞n=1 ⊂ X がCauchy列とは,

任意の open 0 ∈ V ⊂ X について, ある n0 ∈ Z+があって, 任意の n ≥ m ≥ n0について,

xn − xm ∈ V となること.

X がcompleteとは, 任意の Cauchy列が収束すること.
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1.2.3より Cauchy列の定義における V は balancedを仮定して良い.

Remark 1.6.2. X がmetrizableで invariant metric d : X ×X → Rを持つとする.

この時 {xn}∞n=1がCauchy列であることは, 通常のコーシー列の定義「任意の ε > 0について, ある
n0 ∈ Z+があって, 任意の n ≥ m ≥ n0について, d(xn, xm) < ε」と同値である. 理由は invariant

なら d(xn − xm, 0) = d(xn, xm)であるので.

Remark 1.6.3. Cauchy列 (のなす集合)は bounded.

Proof. 任意の open 0 ∈ V ⊂ Xをとる. 1.2.3より, 0 ∈W ⊂ V となるbalanced openW をとる. あ
る n0 ∈ Z+があって, 任意の n ≥ m ≥ n0について, xn−xm ∈W となる. また x1, . . . , xn0 ∈ t0W
となるような t0 ≥ 1を取れる. t ≥ 2t0とすると, n > n0ならば, W は balancedより

xn = xn0 + (xn − xn0) ∈ t0W +W ⊂ (2t0)W ⊂ tV.

また n ≤ n0ならば xn ∈ t0W ⊂ tV . よって. よって t ≥ 2t0ならば xi ∈ tV である.

1.7 The space C∞(Ω) and DK

Definition 1.7.1. Ωを空でない Rnの開集合, K ⊂ Rnをコンパクト集合とする.

• C∞(Ω) := {f : Ω→ C | f は C∞級 }
• DK = {f ∈ C∞(Ω) | Suppf ⊂ K}

とおく. これらは C-vector spaceである.

Distributions の定義にDK が必要である. この節の目標は次である: (用語に関しては 1.1.6参照.)

Goal. ある C∞(Ω) の位相で, 次を満たす位相を入れる.

• C∞(Ω) は位相ベクトル空間になる.

• Fréchet space. つまり locally convexかつ complete invariant metricを持つ (F-space)

• Heine-Borel propertyを持つ.

• 任意のコンパクト集合K ⊂ Ωについて, DK ⊂ C∞(Ω)は closed.

以下 Ωを空でない Rnの開集合とする.

Lemma 1.7.2. あるコンパクト集合の列K1 ⊂ K2 ⊂ · · · ⊂ Ω があって次を満たすものが
存在する.

1. Ki ⊂ K◦
i+1
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2. Ω =
⋃∞
i=1K

◦
i

Proof. a ∈ Rn, r > 0について, B(a, r) := {x ∈ Rn | ||x − a|| < r} と定める. B(a, r) := {x ∈
Rn | ||x− a|| ≤ r} である.

B := {B(a, r) | a ∈ Qn ∩ Ω, r ∈ Q>0, B(a, r) ⊂ Ω}

とする. これは可算なので, B = {B1, B2, . . . } と添字をふる.

K1 := B1とする. 以下K1, . . . ,Km が作れた時に, コンパクト集合Km+1 ⊂ ΩでKm ⊂ K◦
n+1 を

みたすものを帰納的に構成する. x ∈ KmについてB(x, rx) ⊂ Ωとなる rx > 0をとる. Kmコンパ
クトなので, Km ⊂

⋃l
j=1B(xj , rxj )とできる. 今 C :=

⋃l
j=1B(xj , rxj )とおくと, C コンパクトで

Km ⊂ C◦ ⊂ C ⊂ Ω

となる. よってKm+1 := C ∪Bm+1とおけば良い.

また上のK1, . . . ,Km, . . .の構成法から, Ω =
⋃∞
i=1K

◦
i となる.

以下 α = (α1, . . . , αn) ∈ Zn+について

Dα := ∂α1
x1 · · · ∂

αn
xn

と定める.

Proposition 1.7.3. 1.7.2のように {Ki}∞i=1をとる. 任意のN ∈ Z+について

pN : C∞(Ω)→ R f 7→ pN (f) = max {|Dαf(x)| | x ∈ KN , |α| ≤ N}

とおく. この時次が成り立つ.

1. P := {pN | N ≥ 1}はC∞(Ω)の seminormからなる separating family. 特に 1.5.4か
ら C∞(Ω)は locally convexかつ invariant metricを持つ C上の位相ベクトル空間と
なる.

2. 任意の x ∈ Ωについて,

evx : C∞(Ω)→ C f 7→ evx(f) = f(x).

は連続である. 特に任意のコンパクト K ⊂ Ω について, DK =
⋂
x∈Ω\K Kerevx ⊂

C∞(Ω)であるので, DK ⊂ C∞(Ω)は (1)の位相で closedである.

3. VN := {f ∈ C∞(Ω) | pN (f) < 1
N }とおくと, {VN | N ≥ 1}はC∞(Ω)の local baseと

なる.
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4. (1)の C∞(Ω)の位相は, {Ki}∞i=1の取り方によらない.

5. {fi}∞i=1をC∞(Ω)の点列とし, f ∈ C∞(Ω)とする. ”(1)の位相で {fi}∞i=1 が f に収束
する”ことは, ”任意の α ∈ Zn+についてDαfiがDαf に局所一様収束する”ことと同
値である.

DαfiがDαf に局所一様収束するとは, 任意のコンパクト集合K ⊂ Ωについて supx∈K{|Dαfi −
Dαf |} → 0となること.

Proof. (1). pN が seminormとなることは簡単にわかる. P := {pN | N ≥ 1}separatingになるこ
とを示す. f ∈ C∞(Ω) \ {0}とする. 定義から x ∈ Ωで f(x) 6= 0となるものがある. よって 1.7.2

より, あるN ≥ 1で x ∈ KN となるものが存在する. pN の定義から, 0 < |f(x)| ≤ pN (f)となる.

よっていえた.

(2). x ∈ Ω, f ∈ C∞(Ω)とする. 示すことは「任意の ε > 0について, ある (1)での位相における
開集合 0 ∈ V ⊂ C∞(Ω)が存在して, 任意の g ∈ V について |evx(f + g)− evx(f)| < εとなる」で
ある. (f + V は f ∈ C∞(Ω)の開近傍になる.)

ε > 0とする. V := {g ∈ C∞(Ω) | pN (g) < ε}とおく. 1.5.4より pN : C∞(Ω) → Rは (1)の位相
で連続になるので, V は (1)での位相における開集合となる. 任意の g ∈ V について,

|evx(f + g)− evx(f)| = |g(x)| ≤ pN (g) < ε

となりいえた.

(3). 1.5.4から, i ∈ Z+, ni ∈ Z+について, V (pi, ni) := {f ∈ C∞(Ω) | pi(f) < 1
ni
}と定め,

B := {V (pi1 , ni1) ∩ · · · ∩ V (pir , nir)}

とする. 1.5.4から Bは local baseである. よって示すことは, 「任意の V := V (pi1 , ni1) ∩ · · · ∩
V (pir , nir)について, あるN ∈ Z+があって, 0 ∈ VN ⊂ V となる」ことである.

V := V (pi1 , ni1) ∩ · · · ∩ V (pir , nir)とする. i1 ≤ · · · ≤ ir として良い. m := max{ni1 , . . . , nir}と
し n := max{ir,m}とおく. p1 ≤ p2 ≤ · · ·であることに注意すると

VN = V (pN , N) ⊂ V (pir ,m) ⊂ V

となる. よって {VN}N≥1は local baseとなる.

(4). {K ′
i}を 1.7.2を満たす別のコンパクト集合族とし, p′iをK ′

iに対応するものとする. 「任意の
N ≥ 1について, あるN ′ ≥ N が存在して, V ′

N ′ = V (p′N ′ , N ′) ⊂ V (pN , N) = VN である」ことを
示す. これを示せば対称性より逆も成り立ち, 二つの位相が同じことが言える ((3)より {VN}N≥1

は local baseとなるので).

N ≥ 1とする. KN ⊂ Ω =
⋃
i′≥1K

′◦
i′ であるので, KN のコンパクト性より, ある N ′ ≥ N で

KN ⊂ K ′
N ′ となるものがある. よって pN ≤ p′N ′ であるので, V (p′N ′ , N ′) ⊂ V (pN , N). よってい
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えた.

(5). 「C∞(Ω)の位相で fi → f」は「任意のN ≥ 1について, ある i0 ≥ 1があって, 任意の i ≥ i0
について, fi ∈ f + VN である」ことと同値である. ({VN}N≥1は local baseとなるので) ここで

fi ∈ f + VN ⇔ pN (fi − f) <
1

N
⇔任意の |α| ≤ N についてKN 上で |Dαfi −Dαf | < 1

N

であることに注意する.

C∞(Ω)の位相で fi → f とする. 任意のK ⊂ Ωコンパクトについて, ある l ≥ 1があって, K ⊂ Kl

となる任意の α ∈ Zn+についてN ≥ max(|α|, l)なるようにN をとる. するとある i0 ≥ 1があっ
て, 任意の i ≥ i0について, fi ∈ f + VN となる. よって i ≥ i0ならば

sup
x∈K
{|Dαfi −Dαf |} ≤ sup

x∈KN

{|Dαfi −Dαf |} ≤ pN (fi − f) <
1

N

である. よってK 上で任意の α ∈ Zn+についてDαfiがDαf に一様収束する.

逆に「任意の α ∈ Zn+についてDαfiがDαf に局所一様収束」すると仮定する . 特にKN 上で一
様収束する. |α| ≤ N となる αは有限なので, C∞(Ω)の位相で fi → f が言える. ((5).の証明の初
めに言った同値性に注意する.)

Proposition 1.7.4. 1.7.3でのC∞(Ω)の位相によって, C∞(Ω)は位相ベクトル空間になり,

Fréchet(locally convexかつ complete invariant metricを持つ )かつ Heine-Borel property

を持つ.

Proof. 1.7.2のように {Ki}∞i=1をとり. 1.7.3のように

pN : C∞(Ω)→ R f 7→ pN (f) := max {|Dαf(x)| | x ∈ KN , |α| ≤ N}

をとる. VN := {f ∈ C∞(Ω) | pN (f) < 1
N }とおくと, 1.7.3から {VN}N≥1 は local baseとなる.

1.5.4から C∞(Ω)は locally convexかつ invariant metricを持つ C上の位相ベクトル空間となる.

よって残りは完備性とHeine-Borel propertyである.

[完備性] {fi}α ⊂ C∞(Ω)を Cauchy列とする. 定義から任意の N ≥ 1について, ある i0 ≥ 1が
あって, 任意の i, j ≥ i0について fi− fj ∈ VN となる. ここで fi− fj ∈ VN とは,「任意の |α| ≤ N
となる αについて, supKN

|Dαfi −Dαfj | < 1
N となる」ことと同値である.

よって任意の α ∈ Zn+について, |α| ≤ N ならば, {Dαfi}はKN 上で一様Cauchy列となる. (つま
り任意の ε > 0について,ある i0 ≥ 1があって,任意の i, j ≥ i0について, supKN

|Dαfi−Dαfj | < ε

である.) よって任意の α ∈ Zn+ について, {Dαfi}∞i=1 は任意のコンパクト集合K ⊂ Ω上で一様
Cauchy列となる.

α = 0とすれば, {fi}∞i=1は任意のコンパクト集合上で一様Cauchy列より, あるΩ上の連続関数 f

があって, 任意のコンパクト集合上で {fi}∞i=1は f に一様収束する. 次の Claimより, f ∈ C∞(Ω)
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となり, 任意の α ∈ Zn+についてDαfiがDαf に局所一様収束する. よって 1.7.3から {fi}∞i=1 は
f に収束する.

Claim 1.7.5. (a, b) ⊂ Rを開区間とし, fi : (a, h) → Rを C1級関数とする. f, gを連続関
数として, (a, b)上で一様収束 fi → f , f ′i → gすると仮定する. この時 f は微分可能かつ
g = f ′となる.

Proof. h > 0とすると∣∣∣∣f(x+ h)− f(x)
h

− g(x)
∣∣∣∣

≤
∣∣∣∣f(x+ h)− f(x)

h
− fn(x+ h)− fn(x)

h
+
fn(x+ h)− fn(x)

h
− g(x)

∣∣∣∣
≤
∣∣∣∣f(x+ h)− f(x)

h
− fn(x+ h)− fn(x)

h

∣∣∣∣+ ∣∣f ′n(x+ θh)− g(x)
∣∣

≤ 1

h
|f(x+ h)− fn(x+ h)|+ 1

h
|f(x)− fn(x)|+

∣∣f ′n(x+ θh)− g(x+ θh)
∣∣+ |g(x+ θh)− g(x)|

≤ 2

h
sup
x∈(a,b)

|f(x)− fn(x)|+ sup
x∈(a,b)

|g(x)− f ′n(x)|+ |g(x+ θh)− g(x)|

(1.7.1)

となる. ここで θ ∈ [0, 1]は fn(x+h)−fn(x)
h = f ′n(x+ θh)となるようにとる.(平均値の定理より存在

する. θは n, hに依存する)

よって任意の ε > 0について, h > 0を supθ∈(−1,1) |g(x+ θh)− g(x)| < ε
2 となるように取り, そし

て nを
2

h
sup
x∈(a,b)

|f(x)− fn(x)|+ sup
x∈(a,b)

|g(x)− f ′n(x)| <
ε

2

となるように大きくとれば, (1.7.1)より, ε > 0について,あるh > 0があって,
∣∣∣f(x+h)−f(x)h − g(x)

∣∣∣ <
εとなる. よっていえた.

[Heine-Borel Propertyについて] 示すことは任意の closed bounded setがコンパクトとなること.

E ⊂ C∞(Ω) closed boundedとする. C∞(Ω)はmetrizableより, Eもそうである. よってコンパ
クトであることは点列コンパクトであることと同値である. (Eの点列コンパクト性を示していく)

1.5.4から任意のN ≥ 1について, pN (E) ⊂ Rは boundedである. よってあるMN > 0があって,

任意の |α| < N, f ∈ Eについて, KN 上で supKN
|Dαf | ≤MN となる.

Claim 1.7.6. α ∈ Zn+とする. 任意の |α| < N となる自然数N について

F := {Dαf | f ∈ E}
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はKN 上で次を満たす.

• 一様有界. つまりあるM > 0があって, 任意のDαf ∈ F について, |Dαf | ≤M .

• 一様同程度連続. つまり任意の ε > 0についてある δ > 0があって, 任意のDαf ∈ F
について, |x− x′| < δならば |f(x)− f(x′)| < ε.

Proof. 一様有界はもう示した. 一様同程度連続を示す. f ∈ E,F := Dαfとする. x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ KNとする. 平均値の定理より. あるMn+1があって, KN+1上で | ∂F∂x1F (x)| ≤MN+1

となる. よって

|F (x)− F (y)| ≤ |F (x1, . . . , xn)− F (y1, x2, . . . , xn)|+ · · ·+ |F (y1, . . . , yn−1, xn)− F (y1, . . . , yn)|
≤MN+1 [|x1 − y1|+ · · ·+ |xn − yn|] .

(1.7.2)

がいえる. これは一様同程度連続を導く.

N ∈ Z+とする. {gn}n≥1 ⊂ {f |KN
| f ∈ E}とする. このとき {gn}n≥1の部分列 {gnk

}k≥1で, 任
意の |α| < N となる α ∈ Zn+について, Dαgnk

が一様収束する部分列を持つことを示す. (これは
Ascoliの定理の議論をまねる)

{x1, x2, . . . , } ⊂ KN をKN の可算で稠密な部分集合とする. {gn}n≥1は一様有界より,あるM > 0

があって |gi(xj)| < M となる.

以下「ある部分列 {gnk
}k≥1 があって, 任意の i ≥ 1 について {gnk

(xi)}k≥1 は収束する」こと
を示す. これは対角線論法. i = 1 の時は, ボルツァーノ・ワイエルシュトラスの定理から
{g11(x1), g12(x1), g13(x1), . . .} ⊂ Cが収束するように g1k が取れる. 次に {g1k}の部分列をうま
く取ることで, {g21(x2), g22(x2), g23(x2), . . .} ⊂ Cが収束するように g2kが取れる.これを繰り返す
と次のような点列が取れる.

g11(x1) g12(x1) g13(x1) · · ·
g21(x2) g22(x2) g23(x2) · · ·

...
...

. . .

そこで gm := gmmとおけば, これが欲しい点列になる.

さて上の {gm}m≥1はKN 上である gに一様収束することを示す. g : KN → Cを以下のように構
成する. x ∈ Ω \KN ならば g(x) = 0とする. x ∈ KN とする. {gm(x)} ⊂ Cは Cauchy列である
ことを示す. ε > 0とする. すると次のようにできる.

• {gm}≥1は一様同程度連続なので, ある有限この開集合 Uj ⊂ ΩがあってKN ⊂
⋃l
j=1 Uj か

つ, 任意のm ≥ 1かつ x, y ∈ Uj について |gm(x)− gm(y)| < εとなる.

• x ∈ U1として良い. すると上の xj で xj ∈ U1となるものが取れる. するとあるM0があっ
て, 任意のm,m ≥M0について |gm(xj)− gm′(xj)| < εとなる.
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以上より任意のm,m ≥M0について

|gm(x)− gm′(x)| ≤ |gm(x)− gm(xj)|+ |gm(xj)− gm′(xj)|+ |gm′(xj)− gm′(x)| ≤ 3ε.

となる. よって {gm(x)} ⊂ CはCauchy列である. これより g(x) := limm→∞ gm(x)として定義で
きる.

あとはこの議論を繰り返す. ({D1gm}m→∞の部分列をとる.) 1.7.5によって, 部分列 {gm(x)}と
Ωの CN 級関数 gがあって, Dαgm → Dαgは一様収束する. 4

以下 Eが点列コンパクトであることを示す. {fm}m≥1 ⊂ Eとする. 任意のN ∈ Z+について, あ
る部分列 {fmk

}がKN 上でCN 級関数に一様収束するものがあるよって対角線論法を用いること
で, ある部分列 {fmk

}があって, 任意の α ∈ Z+について {Dαfmk
}局所一様収束するものが取れ

る. この fmk
は Ω上の C∞級関数 f に局所一様収束する. よって点列コンパクトである.

1.8 Space of test functions and distributions

引き続き Ωを空でない Rnの開集合とする.

Definition 1.8.1.

D(Ω) = {ϕ : Ω→ C | ϕC∞, supp(ϕ) コンパクト }

とする. D(Ω)の元をtest functionという.

この節では以下を示す.

Goal.

• D(Ω)が locally convex complete with Heine-Borel propertyを満たす位相ベクトル空
間になるような位相 τ が存在すること. (この位相は距離化可能とは限らない. よって
Frechetとは言えない)

• C∞(Ω)に 1.7.3の位相を入れる. この時D(Ω) ↪→ C∞(Ω)は連続である.

• K ⊂ Ωコンパクトとし. DK = {f ∈ C∞(Ω) | Suppf ⊂ K}とする. するとこれは
C∞(Ω),D(Ω)の部分集合である. この時DK に誘導される 2つの部分位相は同じであ

4Dαgm → Dαg の収束は, おそらく K◦
n 上にした方が良い. 微分をしているので境界を考えるのは面倒である.
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る. よって以下の図式が成り立つ.

DK � � closed subspace //� v

closed subspace ((

D(Ω)� _
conti
��

C∞(Ω)

そこで任意のN ≥ 0について

‖ · ‖N : D(Ω)→ R≥0, ϕ 7→ ‖ϕ‖N = max
{
|Dαϕ(x)|

∣∣ α ∈ Zn≥0, |α| ≤ N, x ∈ Ω
}

とする. ‖ · ‖N は Cベクトル空間D(Ω)のノルムであり, ‖ · ‖N ≤ ‖ · ‖N+1となる.

Lemma 1.8.2. K ⊂ Ωをコンパクトとする. {‖·‖N}N≥0で誘導されるDKの位相は, 1.7.3

での {pN}N≥1による位相と同じである.

ここで {‖ · ‖N}N≥0 で誘導される DK の位相とは, f ∈ DK として, N ∈ Z+, ε > 0について,

{ϕ ∈ DK | ‖ϕ− f‖N < ε}が生成する位相である.

Proof. 1.7.3のようにコンパクト集合の列K1 ⊂ K2 ⊂ · · · ⊂ Ωで Ω =
⋃
i≥1Ki, Ki ⊂ K◦

i+1で,

pN (ϕ) = max
{
|Dαϕ(x)|

∣∣ α ∈ Zn+, |α| ≤ N, x ∈ KN

}
.

となるようにとる. K ⊂ Ωはコンパクトなので, ある N0 があって N ≥ N0 ならばK ⊂ KN と
なる.

任意のm ∈ Z+について, あるN があって,

{ϕ ∈ DK | ‖ϕ‖N < ε} ⊂ {ϕ ∈ DK | pm(ϕ) < ε}

であることを示す. m ∈ Z+を固定する. するとN ≥ max{m,N0}なるN について, ϕ ∈ DK な
らば, Supp(ϕ) ⊂ KN である. よって定義から ‖ϕ‖N = pN (ϕ)となる. 以上よりN ≥ max{m,N0}
ならば,

{ϕ ∈ DK | ‖ϕ‖N < ε} = {ϕ ∈ DK | pN (ϕ) < ε} ⊂ {ϕ ∈ DK | pm(ϕ) < ε}.

上の証明で pN と ‖ · ‖N の役割を入れ替えて議論することができる. よって 2つの位相は同じであ
る.

Remark 1.8.3. {‖ · ‖N}N≥0によって, D(Ω) locally convex metrizableな C上の位相ベクトル空
間の構造を持つ. がそれは完備ではない (そしてこれはほしい位相ではない).
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Ω = R とする. 自然数 i ∈ Z+について, f を Supp(f) ⊂ (13 ,
2
3), f(

1
2) = 1, 0 ≤ f ≤ 1となるよう

な滑らかな関数をとる. (1の分割に出てくる Bump関数みたいなもの) そして,

ϕn :=

n∑
i=1

1

2i−1
f(x− i)

とする. ϕnは関数として次を満たす.

• ϕnは C∞で Supp(ϕn) ⊂ (0, n). 特にD(Ω)の元である.

• 各 1 ≤ i ≤ nについて, (i− 1, i)上では 0 ≤ ϕn ≤ 1
2i−1 .

• あるM > 0があって, 任意の n, α ∈ Z+について |Dαϕn| < M .(ϕnの微分は f にしかよら
ない定数で抑えられる.)

{ϕn}は {‖ · ‖N}N≥0の位相に関して Cauchy列である. これを示す. まず, {‖ · ‖N}N≥0の 0での
local baseは

VN,r = {f ∈ D(R) | ‖f‖N < r }

という形をしている. そこで, するとm′ ≥ m ≥ 1ならば,

‖ϕ′
m − ϕm‖N =

∥∥∥∥∥
m′∑

i=m+1

1

2i−1
f(x− i)

∥∥∥∥∥
N

≤ 1

2m
M

となる. よって Cauchy列である.

しかし極限は存在しない. 極限 ϕが存在したら, ϕ(i+ 1
2) =

1
2i−1 にならないといけず, Supportは

コンパクトにならない.

Definition 1.8.4. 1. K ⊂ Ωコンパクトとする. DKの位相 τKを {‖ · ‖N}N≥0で定めら
れる位相とする. これは 1.8.2により, 1.7.3での位相と同じであり, 特にDKは locally

convex, complete, metrizable, with the Heine-Borel propertyである.

2. D(Ω)の集合族 βを, ”空でない convex, balanced set W ⊂ D(Ω)で, 任意のコンパク
ト集合K ⊂ ΩについてW ∩ DK ∈ τK となるもの”の集まりとする.

3. D(Ω)の集合族 τ を, ”
⋃
i∈I(ϕi +Wi)とかけるもの”の集まりとする. ただし i ∈ I に

ついて, ϕi ∈ D(Ω),Wi ∈ βとする.

Remark 1.8.5. (D(Ω), τ)は位相ベクトル空間となる. (後で示す). (D(R), τ)においては, 1.8.3で
の点列 {ϕn} は Cauchy列にはならない.

Proof. xm := m+ 1
2 とする, cm > 0について

V := {ϕ ∈ D(R) | |ϕ(xm)| < cm∀m ≥ 1}
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とする. まず V ∈ βであること示す. convex, balancedなのは明らか. 任意のK ⊂ Ωコンパクト
についてK ∩ {xm}は有限集合より, V ∩DK ∈ τK となる. 特に V ∈ τ で (D(R), τ)における 0の
開近傍である.

cm := 1
2m とする. すると任意のm′ > m ≥ 1について,

|ϕm′(xm′)− ϕm(xm′)| = 1

2m′−1
>

1

2m′ = cm′

となる. よっϕm′−ϕm 6∈ V となる. これより (D(R), τ)においては, 1.8.3での点列 {ϕn}はCauchy

列にはならない.

Theorem 1.8.6. β, τ を 1.8.4におけるD(Ω)の集合族とする.

1. τ はD(Ω)の位相であり, βは τ の 0での local baseである.

2. (D(Ω), τ)は C上の locally convexな位相ベクトル空間.

Proof. (1). まず τ はD(Ω)の位相であることを示す. ∅ ∈ τ は 1.8.4において, I = ∅とおけば良
い. D(Ω) ∈ βより, D(Ω) ∈ τ も明らか. また, τ は union ”

⋃
” という操作で閉じている. よって

示すことは, 「V1, V2 ∈ τ ならば V1 ∩ V2 ∈ τ」のみとなる.

V1, V2 ∈ τ とする. ϕ ∈ V1 ∩ V2をとる. すると, i = 1, 2について, ある ϕi ∈ D(Ω)とWi ∈ β が
あって,

ϕ ∈ ϕi +Wi ⊂ Vi

となる. ある δi ∈ (0, 1)で

δ1W1 ∩ δ2W2 ∈ β かつ ϕ+ δ1W1 ∩ δ2W2 ⊂ V1 ∩ V2

となるものが存在することを示せば良い. コンパクト集合K ⊂ Ωで ϕ,ϕ1, ϕ2 ∈ DK となるもの
を取る. すると ϕ− ϕi ∈ Wi ∩ DK である. Wi ∈ βであるので, Wi ∩ DK はDK で開集合である.

DK は C上の位相ベクトル空間であるので, ある δi ∈ (0, 1)があって, ϕ − ϕi ∈ (1 − δi)Wi ∩ DK
とできる. 以上より, Wiは convexであるので,

ϕ+ δiWi ⊂ ϕi + δiWi + δiWi ⊂ ϕi +Wi ⊂ Vi

となる, よって ϕ+ (δ1W1 ∩ δ2W2) ⊂ V1 ∩ V2となりいえた. (δ1W1 ∩ δ2W2 ∈ βは簡単にわかる.)

また βが 0の local baseであることは, 上の議論においてϕ = 0, V1 = V2として議論すればわかる.

(2). 1.8.4から, (D(Ω), τ)において平行移動は同相写像になる.

[(D(Ω), τ)は T1であること] ϕ1, ϕ2 ∈ D(Ω)で ϕ1 6= ϕ2となるものを取る.

W := {ϕ ∈ D(Ω) | ‖ϕ‖0 < ‖ϕ1 − ϕ2‖0} .
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W は convex, balanced, 0 ∈ W で 任意のコンパクトK ⊂ Ωについて, W ∩ DK は DK で開集合
になる. つまりW ∈ βである. そして, ϕ1 /∈ ϕ2 +W かつ ϕ2 ∈ ϕ2 +W であり, ϕ2 +W ⊂ D(Ω)
で openなので,

D(Ω) \ {ϕ1} =
⋃

φ2∈D(Ω)\{φ1}

ϕ2 +W

となり, {ϕ1} ⊂ D(Ω)は closedである.

[加法が連続なること.] T : D(Ω)×D(Ω) → D(Ω)を (ϕ1, ϕ2) 7→ ϕ1 + ϕ2とする. ϕ1 + ϕ2の開近
傍は β ∈W を使って, ϕ1 + ϕ2 +W とかける. よって,

T

(
ϕ1 +

1

2
W,ϕ2 +

1

2
W

)
⊂ ϕ1 + ϕ2 +W

であるので, T は (ϕ1, ϕ2)で連続となる.

[スカラー倍が連続なること.] S : C×D(Ω)→ D(Ω)を (α0, ϕ0) 7→ αϕとする. これが (α0, ϕ0)で
連続であることを示す.

K ⊂ Ωを ϕ0 ∈ DK となるコンパクト集合とする. W ∈ βとする. すると次が成り立つ.

• W ∩ DK ⊂ DK は開集合なので, ある ε > 0があって, 任意の |α| < εについて, αϕ0 ∈ 1
3W

である.

• α0 = 0または ϕ ∈ 1
3|α0|}W の時は, W は balancedなので, α0ϕ ∈ 1

3W となる.

• ϕ ∈ 1
3W かつ |α| ≤ 1ならば, αϕ ∈ 1

3W である.

よって, |α| < min{ε, 1}かつ ϕ ∈ min{13 ,
1

3|α0|}W ならば

(α0 + α)(ϕ0 + ϕ) ∈ α0ϕ0 +
1

3
W +

1

3
W +

1

3
W ⊂ α0ϕ0 +W

となる. (W は convex balancedを使う) よってスカラー倍も連続.

以上より (D(Ω), τ)はC上の位相ベクトル空間. そして, βの元は convexであるため, (D(Ω), τ)は
locally convex.

Theorem 1.8.7. ひき続き, β, τ を 1.8.4におけるD(Ω)の集合族とする. (D(Ω)には位相
τ を入れる. 1.8.6より, (D(Ω), τ)はC上の locally convexな位相ベクトル空間で, βは 0の
local baseである.

この時次が成り立つ.

1. V ⊂ D(Ω)を convex balanced setとする. V が開集合であることは, 任意のK ⊂ Ω

について, V ∩ DK はDK で開集合になること (つまり V ∩ DK ∈ τK)と同値.

2. K ⊂ Ωをコンパクト集合とする. この時, DK ↪→ D(Ω)によって誘導される部分位相
は, 1.8.4での τK と同じである.
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3. E ⊂ D(Ω)が boundedならば, あるコンパクト集合K ⊂ Ωで E ⊂ DK となるものが
存在し, 任意のN ∈ Z+について, ‖ · ‖N : E → Rは bounded.

4. D(Ω)はHeine-Borel propertyを持つ.

5. {ϕn}∞n=0 ⊂ D(Ω) が Cauchy 列ならば, あるコンパクト集合 K ⊂ Ω があって,

{ϕn}∞n=0 ⊂ DK かつ, 任意のN ∈ Z+について,

lim
n,m→∞

‖ϕm − ϕn‖N = 0.

となる. (最後の意味は ‖ · ‖N に関して Cauchy列になるということ.)

6. ϕn → ϕ0 in D(Ω)ならば, あるコンパクト集合K ⊂ Ωがあって, {ϕn}∞n=0 ⊂ DK か
つ任意の α ∈ Zn+について, 一様にDαϕn → ϕ0と収束する.

7. D(Ω)はこの位相において完備である.

Proof. 次の claimを示す.

Claim 1.8.8. V ⊂ D(Ω)を開集合, K ⊂ Ωをコンパクト集合とする. この時 V ∩DK はDK
上で開集合である. (つまり V ∩ DK ∈ τK ということ. ) 特に DK ↪→ D(Ω)は連続

Proof. 任意の ϕ ∈ V ∩ DK について, ある 0の local base W ∈ β で ϕ + W ⊂ V となるもの
が存在する. すると ϕ +W ∩ DK ⊂ V ∩ DK であり, W ∩ DK は DK で開集合である. よって,

V ∩ DK ⊂ DK は開集合である.

(1). ⇒は claimから. ⇐について, V = ∅の時は明らか. そうでない時は, V ∈ βよりOK.

(2). Claimより, DK ↪→ D(Ω)は連続である. よってあとはE ∈ τKについて, ある V ⊂ D(Ω)open
であって, E = V ∩ DK となるものが存在することを示せば良い.

E ∈ τK , ϕ ∈ Eとする. τK の位相は 1.8.2によって, {‖ · ‖N}N≥0が誘導する位相と同じであるの
で, あるN ∈ Z+, δ > 0があって,

Wϕ := {ψ ∈ D(Ω) | ‖ψ‖N < δ}

とおくと, φ+Wϕ ∩ DK ⊂ Eとなる. そして, Wϕ ∈ βであるので, φ+Wϕ ⊂ D(Ω)で openであ
る. また

(φ+Wϕ) ∩ DK = φ+ (Wϕ ∩ DK) ⊂ E

である. 今 V :=
⋃
ϕ∈E(φ+Wϕ)とおくと V ⊂ D(Ω)openであり, V ∩ DK = Eとなる. よってい

えた.

(3). E ⊂ D(Ω) boundedとする. まずE ⊂ DK となるコンパクト集合の存在を示す. 背理法. 「任
意の K ⊂ Ωコンパクト集合について, E 6⊂ DK とする. すると任意のm ∈ Z+ について, ある
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ϕm ∈ Eと xm ∈ Ωがあって,

• ϕm(xm) 6= 0 かつ
• {xm}は Ω上で集積点を持たない

ものを構成できる. これは次のように帰納的に構成する: 1.7.2のようなコンパクト集合の列 Ω =⋃
i≥1Ki をとる. ϕ1, . . . , ϕm, x1, . . . , xm が構成されたとする. x1, . . . , xm ∈ Ki なる i をとる.

E 6⊂ DKi より, ある ϕm+1 ∈ Eで supp(ϕm) 6⊂ Kiとなるものがある. そこである xm+1 ∈ Ω \Ki

で ϕm+1(xm+1) 6= 0となるものが取れる. これを繰り返せば構成できる.

さてW ⊂ D(Ω)を

W :=

{
ψ ∈ D(Ω) | |ψ(xm)| <

|ϕm(xm)|
m

(∀m ≥ 1)

}
とおく. W は convex balancedかつ 0 ∈W である. そして, 任意のコンパクト集合K ⊂ Ωに関し
て, K ∩ {xm}m≥1は有限集合となるので, W ∩ DK ∈ τK となる. 以上より, W ∈ βとなる. 一方
で ϕmの取り方から ϕm 6∈ W である. つまり任意のm ∈ Z+について, E 6⊂ mW である. これは
Eが boundedに矛盾する.

後半の主張に関しては, コンパクト集合K ⊂ Ωで E ⊂ DK ⊂ D(Ω)となるものを取る. EはDK
でも boundedである. よって,1.5.4より ‖ · ‖N : E → Rは boundedとなる.

(4). E ⊂ D(Ω)をbounded closedとする. (3)より,あるコンパクト集合K ⊂ Ωがあって, E ⊂ DK
となる. (2)より, EはDK の上で bounded closedである. 1.7.4から EはDK 上でコンパクトで
ある. よってD(Ω)でもコンパクトである.

(5). {ϕi}∞i=1 ⊂ D(Ω) Cauchy列とすると, {ϕi}∞i=1は bounded setである. よって (3)からあるコン
パクト集合K ⊂ Ωがあって, {ϕi} ⊂ DKとなる. (2)からDK ⊂ D(Ω)は部分位相が入っているので,

{ϕi}はDK 上でもCauchy列である. つまり任意のN ∈ Z+について limn,m→∞ ‖ϕm−ϕn‖N = 0

となる.

(6). D(Ω)上で ϕi → 0とする. (この場合に示せば良い.) {ϕi} ⊂ D(Ω)は Cauchy列になるので,

(5)からあるコンパクト集合K ⊂ Ωがあって, {ϕi} ⊂ DK となる . よってDK 上でもϕi → 0とな
るので, N ∈ Z+について ‖ϕi‖N → 0である. これは任意の α ∈ Zn+について, 一様にDαϕi → 0

と収束する.

(7). {ϕi} ⊂ D(Ω)をCauchy列とする. (5)からあるコンパクト集合K ⊂ Ωがあって, {ϕi} ⊂ DK
となる . 1.7.4によって, DKは完備である. (完備な距離空間の閉集合なので.) よってあるϕ ∈ DK
があって, DK 上で ϕi → ϕ となる. これは D(Ω)上でも ϕi → ϕとなる. よって ϕこそがほしい
収束先である.

以下D(Ω) には常に 1.8.4における位相 τ を入れる. 1.8.7よりD(Ω)は locally convex completeで
Heine-Borel Propertyを持つ位相ベクトル空間である.

Remark 1.8.9. x ∈ Ωについて evx : D(Ω)→ Cを evx(ϕ) := ϕ(x)として定めると, これは連続で
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ある. なぜならば ϕ ∈ D(Ω)と ε > 0について

W := {f ∈ D(Ω) | ‖f‖0 < ε}

とおくと, これは開集合であり, evx(ϕ+W ) ⊂ B(ϕ(x), ε)となる. つまり evxは ϕ ∈ D(Ω)で連続
であり, ϕは任意なので, evxは連続である.

またDK =
⋂
x∈Ω\K ev−1

x (0) とかけるので, 特にDK ⊂ D(Ω)は closedである.

Definition 1.8.10. Ω ⊂ Rn を空でない開集合とする. Ω上の超関数 (distribution)とは,

連続な C線型写像 Λ : D(Ω)→ Cのことである. その集まりをD′(Ω)と表す.

Proposition 1.8.11. Y をC上の locally convexな位相ベクトル空間とし, Λ : D(Ω)→ Y

を C-線型写像とする. 以下は同値である.

(a) Λは連続.

(b) Λは有界
(c) D(Ω)上で ϕi → 0となる点列に対し, Y 上で Λϕi → 0となる.

(d) 任意のコンパクト集合K ⊂ Ωについて, Λ|DK
: DK → Y は連続.

よって特に C線型写像 Λ : D(Ω)→ Cに対して, Λが超関数であることは, Λが有界であることと
同値であり, そして任意のコンパクト集合K ⊂ Ωについて, Λ|DK

: DK → Y は連続であることと
同値である.

Proof. [(a) ⇒ (b)] 1.4.2より.

[(b) ⇒ (c)] {ϕi}i≥1 ⊂ D(Ω)をD(Ω)上で ϕi → 0となる点列とする. 1.8.7よりあるコンパクト集
合K ⊂ Ωがあって, {ϕi} ⊂ DK となる. 今

Λ|DK
: DK

bounded
↪→ D(Ω) Λ−→ Y

という写像もまた boundedになる. DK は 1.7.3からmetrizableであるので, 1.4.2からΛ|DK
は連

続である. よって, Λ(ϕi) = Λ|DK
(ϕi)→ 0となる.

[(c) ⇒ (d)] {ϕi} ⊂ DK を ϕi → 0となる点列とする. (c)の仮定から, Λ|DK
(ϕi) = Λϕi → 0であ

る. これは 1.4.2から Λ|DK
は連続であることを意味する.

[(d)⇒ (a)]示すべきことは,任意の convex balanced open set0 ∈ U ⊂ Y について, Λ−1(U) ⊂ D(Ω)
が openとなることである. まず Λ−1(U)は convex balancedで 0 ∈ Λ−1(U)となる. そして任意
のコンパクト集合K ⊂ Ωについて, (d)の仮定から Λ−1(U) ∩DK ∈ τK となる. よって 1.8.7より
Λ−1(U)はD(Ω)上で openとなる.
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Corollary 1.8.12. α ∈ Zn+について, Dα : D(Ω)→ D(Ω)をDα(ϕ) := Dαϕとすると, こ
れは連続である.

Proof. K ⊂ Ωをコンパクト集合とすると, 以下の可換図式が成り立つ.

D(Ω) Dα
// D(Ω)

DK Dα
//?�

OO

DK
?�

OO

よってDα : DK → DK が連続であることを示せば良い . 任意の ϕ ∈ DK , N ∈ Z+について,

‖ϕ‖N ≤ |ϕ|N+|α|

である. DK の位相は 1.8.2より {‖ · ‖N}N≥0 で定まっていたのでいえた.

Proposition 1.8.13. Λ : D(Ω)→ Cを C線型写像とする. 以下は同値である.

(a) Λ ∈ D′(Ω), つまり Λは超関数である.

(b) 任意のコンパクト集合K ⊂ Ωについて, あるN ≥ 0とある C > 0があって, 任意の
ϕ ∈ DK について,

|Λϕ| ≤ C‖ϕ‖N

が成り立つ.

Proof. [(b) ⇒ (a)] K ⋐ Ω をコンパクト集合とする. 1.8.11 から示すことは, Λ|DK
: DK ↪→

D(Ω)
Λ−→ C が連続となることである. 平行移動してΛ|DK

が 0で連続であることを示せば良い. 仮
定 (b)にあるような N ≥ 0, C > 0を固定する. 任意の ε > 0について,

V = {ϕ ∈ DK | ‖ϕ‖N <
ε

C
}

とする. 0 ∈ V ⊂ DKopenであり, 任意の ϕ ∈ V について |Λ|DK
(ϕ)| < εである. よって Λ|DK

は
連続である.

[(a) ⇒ (b)] K ⊂ Ωをコンパクト集合とする. すると Λ|DK
: DK → Cもまた連続である. よって

あるN ≥ 0とある ε > 0があって,

Λ ({ϕ ∈ DK | ‖ϕ‖N < ε}) ⊂ {z ∈ C | |z| < 1}

となる. これは任意の 0でない ϕ ∈ DK について, |Λ( ε
2∥φ∥N ϕ)| < 1となる. よって任意の ϕ ∈ DK
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について,

|Λ(ϕ)| < 2

ε
‖ϕ‖N

となる. C = 2
ε とおけばいえた.

Definition 1.8.14. Λ ∈ D′(Ω)とする. Λがfinite orderを持つとは, ”ある N ≥ 0があっ
て, 任意のコンパクト集合K ⊂ Ωについて, あるC > 0があって, 任意のϕ ∈ DKについて,

|Λϕ| ≤ C‖ϕ‖N

が成り立つ”こと. これが成り立つ最小の自然数N を Λの orderという.

Example 1.8.15 (Diracの超関数). x ∈ Ωについて, δx = D(Ω)→ Cを δx(ϕ) := ϕ(x)とする. δ

は distributionである. なぜならば任意の ϕ ∈ D(Ω)について,

|δx(ϕ)| = |ϕ(x)| ≤ ‖ϕ‖0

が成り立つので, 1.8.13からわかる. さらに δxは finite orderを持つ, orderは 0である.
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Chapter 2

超関数続き・convolution

Notation

• Ω ⊂ Rn : non-empty open subset

• K ⊂ Ω : compact subset

• DK := {ϕ : Ω→ C | ϕ ∈ C∞(Ω), Supp ϕ ⊂ K}
• D(Ω) :=

⋃
K⊂Ω: cptDK test functionの空間

• ϕ ∈ D(Ω), N ∈ Z≥0について,

‖ϕ‖N := max{|Dαϕ(x)| | x ∈ Ω, α ∈ Zn+, s.t. |α| :=
n∑
i=1

αi ≤ N}

• ∀f ∈ C∞(Ω), N ∈ Z≥0, α ∈ Zn+, s.t. |α| = α1 + · · ·+ αn ≤ N について,

PN (f) := max{|Dαf(x)| | |α| ≤ N}

VN := {f ∈ C∞(Ω) | PN (f) ≤ 1
N }

• τK : DK 上の位相で, {VN}∞N=1とその平行移動で定められるもの.

• β : convex balanced 0 ∈ W ⊂ D(Ω)であって, 任意のコンパクト集合 K ⊂ Ωについて
DK ∩W ∈ τK となるW からなる集合族.

• τ : βの平行移動によって定められるD(Ω)上の位相
• D′(Ω) := {ϕ : D(Ω)→ C | ϕ′連続な線形写像 } この元を超関数 (distribution)という.
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ルベーグ測度の定義の復習

Borel measure （ボレル測度）

Definition 2.0.1. Borel σ-代数を

B(Rn) := σ({開集合 in Rn})

と定める. ここで σ({開集合 in Rn})とは可算回の和・共通部分・補集合の操作で生成され
る集合族をさす.

µがBorel measure とは， B(Rn) 上に定義された測度, つまり µ(∅) = 0かつ完全加法性を
持つ写像 µ : B(Rn)→ [0,∞]とする.

Lebesgue measure （ルベーグ測度）

Borel集合だけでは，測度を割り当てたい集合が足らない. 例えば，カントール集合やさらに病的な
集合の取り扱いに限界があLebesgue measureは，Borel σ-代数を測度に関して完備化（completion）
して得られるより大きな集合族に定義される.
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1. 外測度 m∗ を定義する：

m∗(E) := inf

{ ∞∑
k=1

|Ik|

∣∣∣∣∣ E ⊂
∞⋃
k=1

Ik, Ik は区間
}

（|Ik| は区間の長さ）
2. ルベーグ可測集合：集合 E が Lebesgue measurable であるとは，

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec) for all A ⊂ Rn

が成り立つこと。
3. この可測集合族 L 上に，m(E) := m∗∗(E) を定義する。

Definition 2.0.2. Lebesgue measure m は，

m : L → [0,∞]

で，L は全ての Lebesgue measurable 集合を含む。

L は B(Rn) を含み， 測度に関して完備（零集合の部分集合も全て含む）である.

Borel measure と Lebesgue measure の違いは以下の通り.

項目 Borel measure Lebesgue measure

定義域
Borel σ-代数
B(Rn)

Lebesgue measurable

集合族 L

構成方法
開集合から生成される
最小の σ-代数上の測度

外測度から
Carathéodory の方法で構成

完備性
一般には完備でない

（零集合の部分集合を含まない場合がある）
完備

（零集合の部分集合も可測）

関係
Lebesgue measure の Borel 部分制限が

Borel Lebesgue measure

Lebesgue measure は
Borel measure の完備化

符号付き測度

(X,A) を可測空間とする.

Definition 2.0.3. ν : A → [−∞,+∞] が次の条件を満たすとき, 符号付き測度 (signed

measure)という.

1. ν(∅) = 0.
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2. ν は可算加法性を持つ：任意の互いに素な可測集合列 {Ek}∞k=1 に対して

ν

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

ν(Ek)

が成り立つ。ただし，和の右辺では∑∞
k=1 ν(Ek)

+ +
∑∞

k=1 ν(Ek)
− の少なくとも一方

は有限とする. （ここで x+ = max(x, 0), x− = max(−x, 0)）であることを仮定し，
+∞−∞ の不定形が出ないと仮定する)

(2)に関しては, 測度の値が不定形になるのを避ける目的がある. つまり+∞ と −∞ を同時に取
らないようにする.

重要な定理としては以下がある.

• Hahn 分解定理：任意の signed measure ν に対し，X は可測集合 P（正集合）と N（負
集合）に分割でき，

ν(E) ≥ 0 (E ⊂ P ), ν(E) ≤ 0 (E ⊂ N)

• Jordan 分解定理：ν は互いに素な非負測度 ν+（正部分）と ν−（負部分）を用いて

ν = ν+ − ν−

と一意に表される（ν+, ν− は互いに素な台を持つ）.

符号付き測度における可積分関数の定義

非負可測関数 f ≥ 0 に対しては，非負測度のときと同様に∫
X
f dν :=

∫
X
f dν+ −

∫
X
f dν−

とします。ただし右辺が ∞−∞ という不定形にならないようにする. つまり少なくとも一方の積
分が有限でなければならない.

一般の実可測関数 f については

f = f+ − f−, f+ = max(f, 0), f− = max(−f, 0)

と分解し，f が ν に関して可積分であるとは∫
X
f+ dν+ +

∫
X
f+ dν− +

∫
X
f− dν+ +

∫
X
f− dν− <∞

すなわち |f | が ν に関して可積分であることとする.
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この条件の下で ∫
X
f dν :=

∫
X
f dν+ −

∫
X
f dν−

が有限の値として定義される.

複素可測関数の場合 f = u+ iv と実部 u と虚部 v をそれぞれ符号付き測度に関して可積分とす
ることで積分を定義する.

関数解析で出てくる定理

Theorem 2.0.4 (Banach-Steinhaus theorem, 一様有界性定理). X をBanach 空間（完備
ノルム空間, さらに局所凸位相ベクトル空間でも良い）, Y をノルム空間（完備でなくても
よい）とする. F ⊂ C(X,Y ) を連続線形作用素の族とする。
任意の x ∈ X について supT∈F ‖T (x)‖Y <∞ならば,

sup
T∈F
‖T‖op = sup

T∈F
sup

||x||≤1
‖T (x)‖ :<∞

である. つまり作用素ノルムが一様に有界である.

つまり, 点ごとの有界性から, 作用素全体の一様有界性がいえる.

Definition 2.0.5 (Baire space, 第一類, 第二類). X を位相空間とする.

• XがBaire spaceとは,「開集合の可算族Unで,各Unが denceならば,
⋂
Unも dence」

となる空間のこと. 同値な言い換えとして, 「F ◦
n = ∅となる可算個の閉集合につい

て, (
⋃
Fn)

◦ = ∅となる. 」
• X が第一類とは, 可算個の疎集合 (閉包の内部が空集合)の和でかける集合のこと.

• X が第二類とは, 第一類ではないこと.

定義からXがBaire空間とは「任意の空でない開集合がXにおいて第二類である」と同値
である.

Theorem 2.0.6 (Baire の範疇定理, Baire category theorem). X を完備距離空間または
局所コンパクトハウスドルフ空間とする. この時, X は Baire spaceである.
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2.1 Calculus with Distributions

以下 Ω ⊂ Rn上の積分に関してはルベーク測度 dxを入れる. f : Ω → Cが可積分とは, 上の意味
で可積分とする. また f が locally integrable(局所可積分)とは, 任意のコンパクト集合K ⊂ Ωで
可積分となること, つまり ∫K ||f ||dx < +∞とする.

Definition 2.1.1. [Rud, 6.11] f : Ω → C : locally integrableとする. Λf : D(Ω) → Cと
いう写像を, 任意の ϕ ∈ D(Ω))について,

Λf (ϕ) :=

∫
Ω
f(x)ϕ(x) dx

と定義する.

すると, 任意のコンパクト集合 K ⊂ Ωについて, CK :=
∫
K |f(x)| dxとすれば, 任意の

ϕ ∈ DK について,

|Λf (ϕ)| ≤
∫
K
|f(x)| · |ϕ(x)| dx ≤

(∫
K
|f(x)| dx

)
·max
x∈K
|ϕ(x)| = C‖ϕ‖0

となる. よって [Rud, Theorem 6.8]または 1.8.13から, Λf ∈ D′(Ω)である. (もっと強く
finite orderをもち order 0の超関数である. )

以下, Λf と f を同一視する.

Remark 2.1.2. µ を Borel measureまたは positive measureで任意のコンパクト集合K ⊂ Ωにつ
いて µ(K) <∞となるものとする. この時 Λµ : D(Ω)→ Cを

Λµ(ϕ) :=

∫
ϕdµ.

として定義するとこれも Λµ ∈ D′(Ω)である. (もっと強く finite orderをもち order 0の超関数で
ある. ).上と同様に Λµ と µを同一視する.

Definition 2.1.3. [Rud, 6.12] α ∈ (Z+)
n と Λ ∈ D′(Ω)について, DαΛ : D(Ω) → Cを任

意の ϕ ∈ D(Ω)について,

(DαΛ)(ϕ) := (−1)|α|Λ(Dαϕ)

とすることで定義する. この時DαΛ ∈ D′(Ω)である.

実際 C線形であり, 任意のコンパクト集合 K ⊂ Ωについて, [Rud, Theorem 6.8]からある
C ∈ R>0とN ∈ Z+ があって, 任意の ϕ ∈ DKについて |Λ(ϕ)| ≤ C‖ϕ‖N が成り立つ. よっ
て任意の ϕ ∈ DK について

|(DαΛ)(ϕ)| = |Λ(Dαϕ)| ≤ C‖Dαϕ‖N ≤ C‖ϕ‖N+|α|.
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となるので超関数となる.

Remark 2.1.4. 任意の α, β ∈ Zn+について DαDβΛ = Dα+βΛ = DβDαΛとなる.

Lemma 2.1.5. [Rud, 6.13] f : Ω → C を CN 級の locally integrable 関数とする. この時,

任意の α ∈ Zn+について, DαΛf = ΛDαf が成り立つ.

Proof. N による帰納法. α = (α1, . . . , αn) ∈ Zn+ で |α| ≤ N を固定する. すると 1 ≤ i ≤ n で
αi 6= 0となるものがある. β := (α1, . . . , αi − 1, . . . , αn) ∈ Zn+とする.

ϕ ∈ D(Ω)とする. Supp ϕはコンパクトなので, fϕ ∈ CN (Ω) となる. よって∫
Ω

∂

∂xi

(
(Dβf) · ϕ

)
dx = 0,

がいえる. 以上より,

0 =

∫
Ω
(Dαf)ϕdx+

∫
Ω
(Dβf)

∂ϕ

∂xi
dx

= ΛDαf (ϕ) + (−1)
( ∂

∂xi
ΛDβf

)
(ϕ) (2.1.1, 2.1.3)

= ΛDαf (ϕ) + (−1)
( ∂

∂xi
DβΛf

)
(ϕ) (induction hypothesis)

= ΛDαf (ϕ)− (DαΛf )(ϕ) (2.1.4)

となり, ΛDαf (ϕ) = (DαΛf )(ϕ)となるので言えた.

Example 2.1.6. [Rud, 6.11] Lem 2.1.5は一般の f では成り立たない. f 6∈ C0(Ω)でDΛf 6= ΛDf
となる例を挙げる.

Ω := (−1, 1) とし, f : Ω→ Cを

f(x) :=

{
1 (x ≥ 0)

0 (x < 0)

とする. f は原点以外で C1 より,

Λ d
dx
f (ϕ) :=

∫
Ω

d

dx
f · ϕdx = lim

ε→+0

∫ −ε

−1

(
d

dx
f

)
ϕdx+ lim

δ→+0

∫ 1

δ

(
d

dx
f

)
ϕdx = 0

(原点以外で d
dxf(x) = 0となるので.)一方で(
d

dx
Λf

)
(ϕ) = −

∫
Ω
f ·
(
d

dx
ϕ

)
dx = −

∫ 1

0

d

dx
ϕdx = −(ϕ(1)− ϕ(0)) = ϕ(0)
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よって Λ d
dx
f 6=

d
dxΛf である.

Definition 2.1.7. [Rud, 6.15] Λ ∈ D′(Ω), f ∈ C∞(Ω)について, fΛ : D(Ω) → Cを
(fΛ)(ϕ) := Λ(fϕ)と定義する.

Lemma 2.1.8. [Rud, 6.15] Λ ∈ D′(Ω), f ∈ C∞(Ω)について, fΛ ∈ D′(Ω)である.

ここで (fΛ)(ϕ) := Λ(fϕ)である.

Proof. Λ ∈ D′(Ω)なので, [Rud, Thm 6.8]より, 任意のコンパクト集合 K ⊂ Ω についてある
C > 0 とN ∈ Z+があって,

|Λ(ϕ)| ≤ C‖ϕ‖N

が任意の ϕ ∈ DK で成り立つ. よって, 任意の ϕ ∈ DK について, fϕ ∈ DK なので,

|Λ(fϕ)| ≤ C‖fϕ‖N = Cmax{|Dα(fϕ)(x)| | x ∈ K, |α| ≤ N}.

となる. ここで Leibniz ruleによって,

Dα(fϕ) =
∑

α′+α′′=α

Cα′,α′′ ·Dα′
f ·Dα′′

ϕ (∃Cα′,α′′ ∈ Z≥0).

とかける.(Cα′,α′′ は二項係数みたいなもの) C ′ := max{Cα′,α′′ | |α′ + α′′| ≤ N}とすると. 任意の
x ∈ Ω, α ∈ Zn+ で |α| ≤ N なものについて

|Dα(fϕ)(x)| =

∣∣∣∣∣ ∑
α′+α′′=α

Cα′,α′′Dα′
f(x)Dα′′

ϕ(x)

∣∣∣∣∣
≤ C ′ ·

∑
α′+α′′=α

|Dα′
f(x)| · ‖ϕ‖N

≤ C ′ · (N + 1)n ·max{|Dα′
f(x)| | x ∈ K, |α′| ≤ N} · ‖ϕ‖N

よってあるM > 0があって, 任意の ϕ ∈ DK について

|Λ(fϕ)| ≤ C‖fϕ‖N ≤ CM‖ϕ‖N

となる. [Rud, Thm 6.8]から fΛ ∈ D′(Ω)である.

Lemma 2.1.9. [Rud, 6.15] Λ ∈ D′(Ω), f ∈ C∞(Ω)とする. g1, g2 ∈ C∞(Ω), α ∈ Zn+につ
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いて,

Dα(g1g2) :=
∑

α1+α2=α

Cα1,α2 D
α1g1D

α2g2

であるとする. ここで Cα1,α2 は α1 と α2にのみ依存する自然数である. この時

Dα(fΛ) =
∑

α1+α2=α

Cα1,α2 (D
α1f) · (Dα2Λ)

が成り立つ.

Proof. −→u ∈ Rnについて, −→u · −→x := u1x1 + · · ·+ unxn とする. すると,

Dα
(
e
−→u ·−→x

)
= −→u αe

−→u ·−→x

となる. ここで−→u α := uα1
1 · · ·uαn

n である. これは ∂
∂x1

eu1x1+···+unxn = u1e
−→u ·−→x を繰り返し適応す

ればわかる. よって

Dα(e
−→u ·−→x · e

−→v ·−→x ) =
∑
β≤α

Cα−β,βD
α−βe

−→u ·−→x ·Dβe
−→v ·−→x

となる.

[補足] 例えば, n = 1の時に, ∂2

∂x (e
ux · evx) = D2eux · evx + 2Deux ·Devx + eux ·D2evx となるこ

とから. この例においては, Cα−β,β は C2,0 = 1, C1,1 = 2, C0,2 = 1となる. ) 以上よりこの例
においては,

(x+ y)α =
∑
β≤α

Cα−β,β x
α−βyβ

という二項展開に対して, Cα−β,β :=
(
α
β

) となる.

以上より

~uα =
(
~v + (−~v + ~u)

)α
=
∑
β≤α

Cα−β,β ~v
α−β · (−~v + ~u)β

=
∑
β≤α

Cα−β,β ~v
α−β ×

∑
γ≤β

Cβ−γ,γ (−1)|β−γ|~vβ−γ~uγ

=
∑
γ≤α

(−1)|γ| ~vα−γ~uγ ×
∑

γ≤β≤α
(−1)|β|Cα−β,βCβ−γ,γ
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以上より, ∑
r≤β≤α

(−1)|β|Cα−β,βCβ−γ,γ =

{
(−1)|α|, γ = α

0, otherwise

となる. よってDβ
(
ϕDα−βf

)に Leibnitz ruleを使って,∑
β≤α

(−1)|β|Cα−β,βDβ
(
ϕDα−βf

)
=
∑
β≤α

(−1)|β|Cα−β,β
∑

γ≤β≤α
Cβ−γ,γ(D

γϕ)(Dα−γf)

=
∑
γ≤α

∑
γ≤β≤α

(−1)|β|Cα−β,βCβ−γ,γ(Dγϕ)(Dα−γf)

= (−1)|α|(Dαϕ) f

となる. よって

Dα(fΛ)(ϕ) = (−1)|α|(fΛ)(Dαϕ) = (−1)|α|Λ(f ·Dαϕ) = Λ
(
(−1)|α|f ·Dαϕ

)
=
∑
β≤α

(−1)|β|Cα−β,βΛ
(
Dβ(ϕ ·Dα−βf)

)
=
∑
β≤α

Cα−β,β (D
βΛ)

(
ϕ ·Dα−βf

)
=
∑
β≤α

Cα−β,β
[
(Dα−βf) · (DβΛ)

]
(ϕ)

となりいえた.

2.2 Weak ∗-topology

以下は [Rud, 3.8-3.14]の内容.

Lemma 2.2.1. X を集合, F を位相空間 Yf への写像 f : X → Yf のなす (空でない)集合
族とする.

τ :=

⋃
i∈I

⋂
f∈F

f−1(Vi,f )

∣∣∣∣∣∣ Vi,f ⊂ Yf open, 有限個の f を除いて Vi,f = Yf


とすると, τ は任意の f ∈ F が連続となる最弱のX 上の位相である.

位相であること. ∅ = f−1(∅) ∩
⋂
g ̸=f g

−1(Yg) ∈ τ X =
⋂
f∈F f−1(Yf ) ∈ τ . また τ は union∪で

閉じている.
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以上より, i = 1, 2についてWi :=
⋃
ji∈Ii

⋂
f∈F f−1(Vji,f ) ∈ τ とした場合, W1 ∩W2 ∈ τ を示せば

良い.

W1 ∩W2 =

 ⋃
j1∈I1

⋂
f∈F

f−1(Vj1,f )

 ∩
 ⋃
j2∈I2

⋂
f∈F

f−1(Vj2,f )


=

⋃
j1∈I1,j2∈I2

 ⋂
f∈F

(
f−1(Vj1,f ) ∩ f−1(Vj2,f )

) ∈ τ
よって τ はX の位相である.

[f が連続なること] 任意の f ∈ F と任意の開集合 V ⊂ Yf について, f−1(V ) = f−1(V ) ∩⋂
g ̸=f g

−1(Yg) ∈ τ より f は連続
[最弱なること] τ ′ をX の位相で, 全ての f ∈ F が連続となるものとする. この時 f−1(V ) ∈ τ ′と
なる. τ は「f ∈ F かつ開集合 V ⊂ Yf とした時の f−1(V )たち」で生成されているので, τ ′ ⊃ τ

となる. よって τ が一番小さい.

Definition 2.2.2. 2.2.1における τ をweak topology on X induced by Fや, F -topology of

X と言う.

日本語だと多分”弱位相”だと思う. 以下，X を C-ベクトル空間, F を線型写像X → Cのなす集
合族とする. (もちろん Rでも良い)

Theorem 2.2.3. [Rud, Thm3.10] X を C-ベクトル空間とし, X ′を線型写像X → Cのな
す集合族とする. (つまり”ベクトル空間”の双対空間 {f : X → C|f は線型 }の部分集合.)

X ′が separating, つまり任意の x 6= y ∈ X について, ある f ∈ X ′があって f(x) 6= f(y)で
あると仮定する.

τ ′を 2.2.2におけるX ′-topologyとする. この時 (X, τ ′)は locally convex 位相ベクトル空間
で, X ′は”位相ベクトル空間”の双対空間 {f : X → C|f は線型かつ連続 }となるものが存
在する.

Proof. (1).(X, τ ′)は locally convex位相ベクトル空間なることを示す. CはHausdorffより, (X, τ ′)

もそう. よって T1. (ここに separatingを使う.) さらに τ ′ は平行不変, つまり任意のW ∈ τ ′,

x ∈ X について, W + x ∈ τ ′である. これはW =
⋃
r∈Γ

(⋂
f∈X′ f−1(Vγ,f )

)
とすると, W + x =⋃

r∈Γ

(⋂
f∈X′ f−1(Vγ,f + f(x))

)
となるので.

また ∀f1, . . . , fk ∈ X ′, ∀ri ∈ R>0とし

V := {x ∈ X | |fi(x)| < ri, 1 ≤ i ≤ k} (2.2.1)
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とおくと, このような V たち全体が τ ′の local baseとなる. V は convex balancedなので, (X, τ ′)

は locally convex.

次に足し算が連続なることを見る. 上のようなV について, 1
2V + 1

2V ⊂ V である. T : X×X → X

を T (x, y) : −x+ y とすると, T (12V ×
1
2V ) ⊂ V である. V 全体は 0の local baseとなるので, こ

れは T が (0, 0) ∈ X で連続であることを意味する. τ ′の平行不変性より T は連続となる.

スカラー倍が連続なることを見る. S : C × X → X を S(α, x) := αxとする. αx ∈ U となる
U ∈ τ ′をとる. すると (2.2.1)と言う形の V ′で, V ′ + αx ⊂ U かつ

V ′ := {z ∈ X | |fi(z)| < r′i, 1 ≤ i ≤ k′}

となるものが存在する. すると, 開集合 V ′′ ∈ τ ′と ∃ε ∈ R>0 があって次を満たすようにとれる.

• 任意の 1 ≤ i ≤ k′と ∀y ∈ V ′′について, |α| |fi(y)| <
r′i
2 .

• ε ·max{|fi(z)| | z ∈ V ′′, 1 ≤ i ≤ k′} < r′i
2 .

今 Ṽ := (α− ε, α+ ε)× (V ′′ + x) とおくと, C×Xの開集合である. さらに (α, x) ∈ Ṽ であり, 任
意の (β, y) ∈ Ṽ と 1 ≤ i ≤ k′について,

|fi(βy − αx)| ≤ |β − α||fi(y)|+ |α||fi(y − x)| <
r′i
2
+
r′i
2

= r′i

よって, S(Ṽ ) ⊂ V ⊂ U となる. これは S が (α, x)で連続であることを意味する. よって S は連
続, 以上より (X, τ ′)は locally convex 位相ベクトル空間.

(2). X ′は双対空間なることを示す. X∗を (X, τ ′)の双対空間,つまり{f : (X, τ ′)→ C|f は線型かつ連続}
とする. 示すことは, X∗ = X ′である. 2.2.1より, 任意の f ∈ X ′について, f は連続である. よっ
てX∗ ⊃ X ′である.

逆の包含を示す. g ∈ X∗とする. gは連続なので, g : X → Cの 0 ∈ X での連続性から,

V ′′ = {z ∈ X | |gj(z)| < tj for 1 ≤ j ≤ `}

とかける V ′′であって, 任意の z ∈ V ′′について, |g(z)| < 1となるものが存在する..

この時 ⋂ℓ
j=1Ker(gj) ⊂ Ker(g)である. これを示す z ∈

⋂ℓ
j=1Ker(gj)とする任意の α ∈ R>0につ

いて, αz ∈ V ′′であるので, V ′′の取り方から α|g(z)| = |g(αz)| < 1となる. αは任意だったので,

g(z) = 0となる.

さて, π : X → Cℓ を π(x) := (g1(x), . . . , gℓ(x))とする. 任意の π(z) = π(z′)となる ∀z, z′ ∈ X に
ついて,

⋂ℓ
j=1Ker(gj) ⊂ Ker(g) なので, g(z) = g(z′)となる. X/Ker(π) ∼= Im(π)を考慮すると, g

は Im(π)上の Cへの線型写像 g̃ を誘導する. Im(π) ⊂ Cℓなので, ui : Cℓ → Cを第 i番目の射影
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とすると, ある α1, . . . , αℓ ∈ Cがあって,

g̃ =

ℓ∑
j=1

αjuj

とかける. よって, g = g̃ ◦ π =
∑ℓ

j=1 αjgj ∈ X ′ となりX∗ ⊂ X ′となる. 以上よりX∗ = X ′であ
る.

Definition 2.2.4. [Rud, 3.14] X を位相ベクトル空間とし, X∗ をその双対空間, つまり
X∗ := {f : X → C|f は線型かつ連続 }とする. x ∈ X について,

evx : X∗ ↪→ C f 7→ evx(f) := f(x)

とする. これによりX → {evx ∈ X̃ | x ∈ X} ⊂ {F : X∗ → C|F は線型 }と言う写像が得
られる. 以後この写像によってX ⊂ {F : X∗ → C|F は線型 }と同一視をする. この時 X

は separatingである.(f 6= g ∈ X∗は, ある x ∈ X があって f(x) 6= g(x)と同値に注意).

2.2.3によりX∗には位相 τ で, (X∗, τ)∗ = X となるものが誘導される. この位相をX∗の
weak ∗-topologyと言う. 2.2.3により, (X∗, τ)は locally convex 位相ベクトル空間である.

[注意] X → {evx ∈ X̃ | x ∈ X}は単射ではない. 例えば 0 < p < 1とした時のX = Lp((0, 1)) に
関して, X∗ = {0}となる. なのでX → {evx ∈ X̃ | x ∈ X} ⊂ {F : X∗ → C|F は線型 }も単射で
はない. (X ⊂ {F : X∗ → C|F は線型 }と同一視しているが, これは厳密には包含ではない)

Xが locally convex 位相ベクトル空間であるならば, Hahn-Banachの定理から単射性が言える. 上
の例は convexではない.

Definition 2.2.5. [Rud, 6.16] 2.2.4のように, 超関数の空間 D′(Ω)には weak ∗-topology
を入れる. これによって, D′(Ω)は locally convex 位相ベクトル空間となりその双対空間が
D(Ω)となる.

以後D′(Ω) には weak ∗-topologyを入れて考える.

Remark 2.2.6. [Rud, 6.16] {Λi}∞i=1を超関数の列とする. この時, weak ∗-topologyで lim
i→∞

Λi = Λ

であることは, 任意の ϕ ∈ D(Ω))について, limi→∞ Λi(ϕ) = Λ(ϕ)となることと同値である.

Theorem 2.2.7. [Rud, Thm6.17] {Λi}∞i=1超関数の列とし, 任意の ϕ ∈ D(Ω)について, 極
限 limi→∞ Λi(ϕ)が Cの値として存在すると仮定する.

このとき,

Λ : D(Ω)→ C, Λ(ϕ) := lim
i→∞

Λi(ϕ)

と定めると, これは連続である (つまり, Λ ∈ D′(Ω)である). さらに任意の α ∈ Zn+につい
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て, D′(Ω)上で limi→∞DαΛi = DαΛ が成り立つ.

証明は Banach-Steinhausの定理 (一様有界性の定理)を真似る.

Proof. Λが C線型は明らか. よって, Λが連続を示す. これには [Rud, Thm 6.6]および 1.8.11か
ら, 任意のコンパクト集合K ⊂ Ωについて, Λ|DK

: DK → Cが連続を示せば良い. これは任意の
ε > 0について, ある open0 ∈ V̂ ⊂ DK でΛ|DK

(V̂ ) ⊂ B(0, ε)となるものが存在することを示せば
良い.

ε > 0とする. open ball B(0, ε) ⊂ Cについて,

E :=
∞⋂
i=1

Λ−1
i (B(0, ε3)).

を考える. 任意の ϕ ∈ DK について, limi→∞ Λi(ϕ)が存在するので, {Λi(ϕ)}∞i=1は bounded. よっ
てあるm ∈ Z+があって, 任意の i ∈ Z+について, Λi(ϕ) ∈ mB(0, ε3) = B(0, mε3 )) となる. Λi は
線型なので, 任意の i ∈ Z+について, ϕ ∈ m(Λ−1

i (B(0, ε3)))である. 以上より,

DK =
∞⋃
m=1

mE

である.

ここでDK は完備距離空間なので, Baire の範疇定理からBaire 空間である. つまりEは内点を持
つ. 内点 x0 ∈ E とその開近傍 V ⊂ Eをとる. すると V − x0 は 0の開近傍である. よって任意の
v ∈ V − x0と任意の i ∈ Z+について, v + x0, x0 ∈ Eなので,

|Λi(v)| = |Λi(v + x0 − x0)| ≤ |Λi(v + x0)|+ |Λi(x0)| ≤ 2
3ε < ε

よって, |Λ(v)| = limi→∞ |Λi(v)| < εである. これより, V̂ := V − x0とおくと, 0 ∈ V̂ ⊂ DK で
Λ|DK

(V̂ ) ⊂ B(0, ε)となる. よって 0 ∈ DK で連続である.

DKの平行移動性を使って, Λ|DK
も連続であり. Λ ∈ D′(Ω)である. また 2.1.3から limi→∞DαΛi =

DαΛである.

Theorem 2.2.8. [Rud, Thm6.18] D′(Ω) 上で limi→∞ Λi = Λ かつ, C∞(Ω) 上で
limi→∞ gi = g in C∞(Ω)と仮定する. このときD′(Ω)上で limi→∞ giΛi = gΛである.

Proof. 示すことは, 「任意の ϕ ∈ D(Ω)について, limi→∞(giΛi)(ϕ) = (gΛ)(ϕ)」である.

ϕ ∈ D(Ω)を固定し, K := Suppϕとする. K はコンパクトである. ε ∈ R>0とすると, 次が成り
立つ.
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• Thm 2.2.7と同じ議論から, ある open 0 ∈ V ⊂ DK があって, Λi(V ) ⊂ B(0, ε2)である.

• 任意の i ∈ Z+について, giϕ ∈ DK である. よって limi→∞ giϕ = gϕである. これより i� 0

について, giϕ− gϕ ∈ V である.

• limi→∞ Λi = Λより, limi→∞ Λi(gϕ) = Λ(gϕ), よって i� 0について |Λi(gϕ)−Λ(gϕ)| < ε
2 .

である.

以上よりこれらを合わせて,

|(giΛi)(ϕ)− (gΛ)(ϕ)| = |Λi(giϕ)−Λ(gϕ)| ≤ |Λi(giϕ)−Λi(gϕ)|+ |Λi(gϕ)−Λ(gϕ)| < ε
2 +

ε
2 = ε.

よって任意の ϕ ∈ D(Ω)について, limi→∞(giΛi)(ϕ) = (gΛ)(ϕ) となりいえた.

2.3 Localization

Definition 2.3.1. [Rud, Def 6.19] Λ1,Λ2 ∈ D′(Ω) と, W ⊂ Ω open について,

”Λ1 = Λ2 in W”を任意の ϕ ∈ D(W ) について, Λ1(ϕ) = Λ2(ϕ)であることとして定める.

Example 2.3.2. W ⊂ Rnを open, f :を Ω上の 局所可積分 (locally integrable)関数とする.

(1) Λf = 0 in W であることは,「任意の ϕ ∈ D(W )について, Λf (ϕ) =
∫
W fϕ dx = 0」と同値で

ある. これは f |W ≡ 0 almost everywhereと同値である.

(2) µ (Borel) measure とする. Λµ = 0 in W であることは, 「任意の ϕ ∈ D(W ) について,

Λµ(ϕ) =
∫
W ϕdµ = 0 」と同値である. これは任意の Borel setE ⊂W について µ(E) = 0と同値

である.

Theorem 2.3.3. [Rud, Thm6.20] Γを Rnの開集合族で⋃U∈Γ U = Ωとなるものとする.

このとき test functionの族 {ψi}∞i=1であって次を満たすものがある.

(a) ある Ui ∈ Γがあって, Suppψi ⊂ Ui.
(b) 任意の x ∈ Ωについて, x ∈ Suppψiとなる i ∈ Z+は有限個で

∑∞
i=1 ψi(x) = 1で

ある.

(c) 任意のコンパクト集合K ⊂ Ωについて, あるm ∈ Z+と openW ⊃ Kがあって, 任意
の i > mについて ψi|W = 0.

Proof. P1, P2, . . . , Pi, . . .をΩ上の有理数点とする. 任意の Piについて, ri ∈ Q>0 でB(Pi, ri) ⊂ U
となるU ∈ Γが存在するような riを一つ固定する. 任意の i ∈ Z+についてC∞関数 ϕi : Ω→ [0, 1]

で, B(Pi,
ri
2 )上で ϕi ≡ 1かつB(Pi, ri)の外で ϕi ≡ 0となるものが存在する.

そこで ψ1 := ϕ1, ψi+1 := ϕi+1 ·
∏i
k=1(1 − ϕk)とする. {ψi}∞i=1 が (a), (b), (c)を満たすことを

示す.
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[(a)] 任意の i ∈ Z+について, ある U ∈ Γであって, Suppψi ⊂ B(Pi, ri) ⊂ U となる.

[(c)] 任意の x ∈ B(Pi,
ri
2 )について, ψi(x) = 1 であるので, ` > iならば

ψℓ(x) = ϕℓ(x)
ℓ−1∏
k=1

(1− ϕk(x)) = 0.

よって任意のコンパクト集合K ⊂ Ω について, あるm ∈ Z+があって, W :=
⋃m
i=1B(Pi,

ri
2 ) ⊃ K.

となる. よって上により, 任意の i > mについて, ψi|W = 0.

[(b)] 上より,
∑∞

i=1 ψi(x)は有限和である. 任意の `について,

ℓ∑
i=1

ψi = 1−
ℓ∏
i=1

(1− ϕi)

であることを示す. ` = 1 のときはよく, 一般のときは
ℓ∑
i=1

ψi = (1−
ℓ−1∏
i=1

(1− ϕi)) + ϕℓ

ℓ−1∏
i=1

(1− ϕi) = 1− (1− ϕℓ)
ℓ−1∏
i=1

(1− ϕi). = 1−
ℓ∏
i=1

(1− ϕi).

より言える. 以上より任意の x ∈ Ωについて, x ∈ B(Pℓ,
rℓ
2 )となる `を固定すれば, j > `ならば

ψj(x) = 0であることと, j = lならば ϕj(x) = 0であることより,

∞∑
i=1

ψi(x) =
ℓ∑
i=1

ψi(x) +
∑
j>ℓ

ψj(x) = 1−
ℓ∏
i=1

(1− ϕi(x)) = 1.

となる. よっていえた.

Theorem 2.3.4. [Rud, Thm6.21] Γを Rnの開集合族で⋃U∈Γ U = Ωとなるものとする.

任意の W ∈ Γについて, ある ΛW ⊂ D′(W )があって, 張り合わせ条件「W ∩W ′ 6= ∅な
らば ΛW = ΛW ′ in W ∩W ′」を満たすとする.

このとき Λ ∈ D′(Ω)がただ一つ存在して, 任意のW ∈ Γについて Λ = ΛW in W となる.

Proof. Theorem 2.3.3により, １の分割 {ψi}∞i=1が取れる. 2.3.3(a)より, 任意の i ∈ Z+について,

あるWi ∈ Γで, Suppψi ⊂Wiとなるものを固定する. Λ : D(Ω)→ Cを

Λ(ϕ) :=
∞∑
i=1

ΛWi(ϕψi).

と定義する. 2.3.3(c)より, これは有限和である. よって Λは well-definedかつ C線型である.
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Claim 2.3.5. Λ は連続である. 特に Λ ⊂ D′(Ω).

Proof. [Rud, Thm 6.6], 1.8.11より, limi→∞ ϕi = 0なる列 {ϕi}∞i=1について, limi→∞ Λ(ϕi) = 0

を示せば良い. [Rud, Thm 6.5], 1.8.7より, コンパクト集合 ∃K ⊂ Ωで, {ϕi}∞i=1 ⊂ DK かつ 任意
のN ∈ Z+について limi,j→∞ ‖ϕi − ϕj‖N = 0を仮定して良い.

2.3.3(c)より, ある m ∈ Z>0で,

Λ(ϕi) =

m∑
j=1

ΛWj (ϕiψj)

となる. よって, 任意の jについて ϕiψj → 0であるので, [Rud, Thm 6.6], 1.8.11から任意の jに
ついて, ΛWj (ϕiψj)→ 0となる. これは, limi→∞ Λ(ϕi) = 0を意味する よって連続.

[補足]「jについてϕiψj → 0」について. Kj := Suppψjはコンパクトなので, Suppϕiψj ⊂ K∩Kj

となる. よって掛け算 DK × DKj → DK∩Kj は連続なので, DK∩Kj 上で ϕiψj → 0となるこれは
D(Wj)上で ϕiψj → 0となる.

さて任意の W ∈ Γ について, Λ = ΛW in W を示す. ϕ ∈ D(W ) をとる. ある m ∈ Z+ で
Suppϕ ⊂

⋃m
i=1Wi となるものを固定する. すると Λ(ϕ) =

∑m
i=1 ΛWi(ϕψi) である. よって

ΛW = ΛWi in W ∩Wiであることから,

Λ(ϕ) =
m∑
i=1

ΛWi(ϕψi) =
m∑
i=1

ΛW (ϕψi) = ΛW (ϕ).

となる. よっていえた.

Λ が唯一なことを示す. もし Λ′ ∈ D′(Ω) で, 任意のW ∈ ΓでΛ′ = ΛW in W であるとする. する
と任意の ϕ ∈ D(Ω)について,

Λ(ϕ) = Λ′(

∞∑
i=1

ϕψi) =

∞∑
i=1

Λ′(ϕψi) =

∞∑
i=1

ΛWi(ϕψi) = Λ(ϕ).

となる. ここで上は有限和に注意する. 以上より Λ′ = Λ.である.

2.4 Supports of Distributions

Definition 2.4.1. [Rud, Def 6.22] Λ ∈ D′(Ω), W ⊂ Ω openとする.“Λ vanishes in W”
をΛ = 0 in W として定義する. (つまり, 任意のϕ ∈ D(W )についてΛ(ϕ) = 0ということ)

さらに V :=
⋃

Λ vanishes in W W . として, support of Λ を Ω \ V として定義する. .
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Example 2.4.2. f : Ω→ C連続とすると, Ex 2.3.2(1)より, 任意の W ⊂ Ω openについて

Λf = 0 in W ⇐⇒ f |W = 0 almost everywhere ⇐⇒ f |W ≡ 0.

であるので. support Λf = Supp f となる.

ここで f の 連続性は必要である. 例えば f : R→ C を f(x) =

{
1 (x ∈ Q)

0 (x /∈ Q)
はΛf = 0 in R より

SuppΛf = ∅ だが Supp f = R である.

Theorem 2.4.3. [Rud, Thm6.23] Λ ∈ D′(Ω)かつ, W :=
⋃

Λ vanishes in ω ω. とする. この
とき Λ vanishes on W . つまり W は Λ が消える最大の開集合である.

ちなみに 2.4.3(sheaf condition)からでもしたがう.

Proof. Γ : を開集合 ω ⊂ Ωで ω上で Λが消えるものの集合とする. . すると Γに付随した１の分
割 {ψi}∞i=1が取れる. よって 2.3.3(c)より, 任意の ϕ ∈ D(Ω)について, ϕ =

∑∞
i=1 ϕψi は有限和で

ある. 今ある ωi ∈ Γがあって, ϕψi ∈ D(ωi) であるので,

Λ(ϕ) =
∞∑
i=1

Λ(ϕψi) = 0

となる. よって, Λ vanishes in W である.

Theorem 2.4.4. [Rud, Thm6.24] Λ ∈ D′(Ω). SΛ := SuppΛ. このとき次が成り立つ.

(a) 任意の ϕ ∈ D(Ω) について, Suppϕ ∩ SΛ = ∅ならば, ϕΛ = 0である.

(b) SΛ = ∅ ならば Λ = 0

(c) ψ ∈ C∞(Ω)でSΛ ⊂ V ⊂ Ωとなる開集合V 上でψ ≡ 1 となるものについて, ψΛ = Λ.

(d) SΛ ⊂ Ωがコンパクトならば, Λ は finite orderを持つ. つまりある C ∈ R>0 と
N ∈ Z≥0 があって, 任意の ϕ ∈ D(Ω)について, |Λ(ϕ)| ≤ C‖ϕ‖N となる. そして, Λ

は C∞(Ω)上の連続線型関数に一意に拡張する．

Proof. [(a)] W := Ω \ SΛとする. 2.4.3から, ϕΛ vanishes in W である. 今W ′ := Ω \ Suppϕと
おくこれは開集合であり, ϕ|W ′ = 0である. よって, ϕΛ vanishes in W ′d絵ある.

これより ⋃
φΛ vanishes in ω ω ⊃ W ∩W ′ = Ωであるので. 2.4.3から, ϕΛ vanishes in Ωである. つ

まり, ϕΛ = 0.

[(b)] 2.4.3から従う.
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[(c)]1Ω を Ωの特性関数とする. ψ − 1Ω は SΛ と交わらない supportを持つ. よって (a)から,

ψΛ = 1ΩΛ = Λ となる.

[(d)]SΛ コンパクトとする. 2.3.3(c)から, ある ψ ∈ D(Ω) であって, Im(ψ) ⊂ [0, 1] かつ ψ|SΛ
≡ 1

となるものがある. K := Suppψとおく. K ⊃ SΛである.

[Rud, Thm 6.8]または 1.8.13から, ある N ∈ Z≥0 と ∃C ∈ R>0 があって, 任意の ϕ̃ ∈ DK につ
いて

|Λ(ϕ̃)| ≤ C‖ϕ̃‖N

である. また C ′ ∈ R>0 で 任意の ϕ ∈ D(Ω)について, ‖ψϕ‖N ≤ C ′‖ϕ‖N となる. 以上より
2.4.4(c)から

|Λ(ϕ)| = |(ψΛ)(ϕ)| = |Λ(ψϕ)| ≤ C‖ψϕ‖N ≤ CC ′‖ϕ‖N

よって, Λ は finite orderである.

さて Λ̃ : C∞(Ω)→ C を
Λ̃(f) := Λ(ψf) (f ∈ C∞(Ω)).

として定義する. f ∈ D(Ω)ならば, 2.4.4(c)から

Λ̃(f) = Λ(ψf) = (ψΛ)(f) = Λ(f)

よって,Λ̃ は Λの拡張である. そして Λ̃は C線型である.

あとは Λ̃ が連続を示せば良い. [Rud, Thm 1.32]または 1.7.4から C∞(Ω) は距離化可能なので,

「fi → 0 ならば, Λ̃(fi)→ 0」を示せば良い. 1.7.3から, 任意の α ∈ Zn+について, Ωのコンパクト
集合上一様に Dαfi → 0 であるよってある Cα があって

|Dα(ψfi)(x)| = |
∑

α′+α′′=α

Dα′
ψ(x) ·Dα′′

fi(x)| ≤ Cα‖ψ‖|α| ·max{|Dα′′
fi(x)| | α′′ ≤ α, x ∈ K}.

となる. ここでK := Supp(ψ)である. よって, 任意の N ∈ Z+についてある CN があって

‖ψfi‖N ≤ CN max{|Dαfi(x)| : |α| ≤ N, x ∈ K}.

である. K 上で Dαfi → 0であるので, 任意の N ∈ Z+ について, limi→∞ ‖ψfi‖N = 0 である.

よって, ψfi → 0. である. [Rud, Thm 6.6]より, Λは連続なので, Λ(ψfi) → 0となる. よって
Λ̃(fi) = Λ(ψfi)→ 0.であり Λ̃は連続である.

あとは唯一性のみである. Λ̃′を Λの拡張とする. 任意のコンパクト集合 K ′ ⊂ Ωについて, 2.3.3(c)

よりあるψ′ ∈ D(Ω)でψ′|K′ ≡ 1となるものがある. よって任意の f ∈ C∞(Ω)についてψf ∈ D(Ω)
かつ f ≡ ψf on K である. D(Ω) ⊂ C∞(Ω)は denceであり,

Λ̃− Λ̃′ : C∞(Ω)→ C f 7→ Λ̃(f)− Λ̃′(f)

は連続なので, (Λ̃ − Λ̃′)−1(0)は閉集合で D(Ω)を含む. よって, (Λ̃ − Λ̃′)−1(0) = C∞(Ω), であり
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Λ̃ = Λ̃′..

Lemma 2.4.5. [Rud, Lem3.9] X をC上のベクトル空間, Λ,Λ1, . . . ,Λnを線形関数とする
このとき以下は同値

1. ある r1, . . . , rn ∈ Cであって Λ =
∑n

i=1 riΛi.

2. ある r ∈ R>0があって, 任意の x ∈ X について, |Λ(x)| ≤ rmaxi≤n{|Λi(x)|}.
3. Ker(Λ) ⊂

⋂n
i=1Ker(Λi).

上に関してはもちろん R上でも良い.

Proof. (1) =⇒ (2)は r := n ·maxi≤n |ri| とすればよい. (2) =⇒ (3)は自明.

(3) =⇒ (1)を示す. π := (Λ1, . . . ,Λn) : X → Cn, つまり π(x) := (Λ1(x), . . . ,Λn(x))とす
る. (3)より, π(x) = π(y) ならば, Λ(x) = Λ(y)である. よって πは Im(π) ⊂ Cn 上の線形関数
Λ̂ : Im(π)→ Cを誘導する. よってある r1, . . . , rn があって, Λ̂ = r1z1 + · · ·+ rnzn とかける. (こ
こで z1, . . . , zn は Cnの座標関数である.) 以上より, Λ = Λ̂ ◦ π = r1Λ1 + · · · + rnΛn.となりいえ
た.

Theorem 2.4.6. [Rud, Thm6.25] Λ ∈ D′(Ω)とし, p ∈ Ωについて δp ∈ D′(Ω) を δp(ϕ) :=

ϕ(p) として定義する. SuppΛ = {p} かつ Λ は orderN を持つと仮定する. このとき
Λ =

∑
|α|≤N CαD

αδpとかけるような Cα ∈ Cが存在する.

逆に任意の p ∈ Ωについて,
∑

|α|≤N CαD
αδp の形の distributionのサポートは p か ∅ で

ある. (後者は Cα = 0の時のみに起こる ).

Proof. 逆に...の部分は明らか, 最初の部分を示す.

p = 0 ∈ Ωとして良い. 「任意の α, |α| ≤ N について Dαϕ(0) = 0となる ϕ ∈ D(Ω)について,

Λ(ϕ) = 0である」ことを示せば良い. なぜならば, Dαϕ(0) = (Dαδ0)(ϕ)なので, もしこれが成り
立てば, Ker(Λ) ⊂

⋂
|α|≤N Ker(Dαδ0)であるので, 2.4.5から成り立つ.

「任意の α, |α| ≤ N についてDαϕ(0) = 0」となる ϕ ∈ D(Ω)を固定する. 任意の η ∈ R>0につ
いて, ある ε ∈ R>0があって,

max{|Dαϕ(x)| : |α| = N, x ∈ K} ≤ η.

となる. ここで K := B(0, ε) である
この時, 任意の x ∈ K について,

|Dαϕ(x)| ≤ ηnN−|α||x|N−|α|, (2.4.1)
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が成り立つことを示す. αによる (降下方向への)帰納法 |α| = N の場合は ηの定義より. 一般に
x = (x1, . . . , xn) ∈ K について,

Dαϕ(x) = Dαϕ(x1, . . . , xn)−Dαϕ(x1, . . . , xn−1, 0)

+Dαϕ(x1, . . . , xn−1, 0)−Dαϕ(x1, . . . , xn−2, 0, 0)

+ · · ·+Dαϕ(x1, 0, . . . , 0)−Dαϕ(0, . . . , 0)

=
n∑
i=1

∫ xi

0

∂

∂ti
Dαϕ(x1, . . . , xi−1, ti, 0, . . . , 0) dti.

であるので, これを用いて,

|Dαϕ(x)| ≤
n∑
i=1

∫ |xi|

0
ηnN−(|α|+1)|x|N−(|α|+1) dti.

= ηnN−(|α|+1)|x|N−(|α|+1)(|x1|+ · · ·+ |xn|)

≤ ηnN−(|α|+1)|x|N−(|α|+1)(n
√
x21 + · · ·+ x2n)

= ηnN−|α||x|N−|α|.

よって (2.4.1)がいえた.

さて ψ ∈ D(Rn) で ψ|
B(0,

1
2 )
≡ 1かつ B(0, 1)の外で ψ ≡ 0となるものをとる. そして, 任意の

0 < r ≤ 1について, ψr ∈ D(Rn)をψr(x) := ψ(xr )と定義する. この時,ある ε > 0とC = C(n,N)

があって, 任意の 0 < r < εについて,

‖ψrϕ‖N ≤ ηC‖ϕ‖N (2.4.2)

であることを示す.

二項定理から
Dα(ψrϕ)(x) =

∑
β≤α

Cαβ
1

r|α|−|β| (D
α−βψ)(xr ) · (D

βϕ)(x).

である. r < εとすると, Suppψrϕ ⊂ B(0, r) ⊂ K であることに注意すると

max
x∈Rn

|Dα(ψrϕ)(x)| ≤ C1
1

r|α|−|β| max
x∈Rn

(
|Dα−βψ(xr )| · |D

βϕ(x)|
)

= C1
1

r|α|−|β| max
x∈B(0,r)

(
|Dα−βψ(xr )| · |D

βϕ(x)|
)

≤ C1 max
x∈B(0,r)

max
β≤α

(
|Dα−βψ(xr )| · ηn

N−|α||x|N−|α| · 1

r|α|−|β|

)
≤ C1 max

x∈B(0,r)

(
|Dα−βψ(xr )| · ηn

N−|β| · (xr )
N−|β|

)
≤ ηC1n

N max
β≤α

max
x∈K
|Dα−βψ(xr )|
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以上より (2.4.2)がいえた. 一方 Λは order N を持つので, ある C ′があって, 任意の ϕ ∈ DB(0,1)

について
|Λ(ϕ)| ≤ C ′‖ϕ‖N

である. よって, 任意の ε < 1と ϕ′ ∈ DB(0,ϵ)について |Λ(ϕ′)| ≤ C ′‖ϕ′‖N . である.

以上の議論をまとめると次がわかる: 任意の η > 0について, ε ∈ R>0があって,

max{|Dαϕ(x)| : |α| = N, x ∈ K} ≤ η.

となる. ここで K := B(0, ε) であるそして, ηによらない C,C ′があって

|Λ(ϕ)| = |Λ(ψrϕ)| ≤ C ′‖ψrϕ‖N ≤ ηCC ′‖ϕ‖N .

である. CC ′‖ϕ‖N .は ηによらないので, |Λ(ϕ)| = 0である. よって Λ(ϕ) = 0. となる.

2.5 Distributions as Derivatives

Theorem 2.5.1. [Rud, Thm3.2] X Rベクトル空間, M ⊂ X 部分空間として次を仮定
する.

• あるmapp : X → R で p(x+ y) ≤ p(x) + p(y) & p(tx) = tp(x). (∀t ≥ 0)となるもの
が存在する．(これに p(x) = 0⇔ x = 0 が加わると semi-norm)

• ある線型写像 f :M → R で, 任意の x ∈M に関して f(x) ≤ p(x).

この時ある Λ : X → R という線型写像で Λ|M ≡ f かつ任意の x ∈ X について以下を満た
すものが存在する

−p(−x) ≤ Λ(x) ≤ p(x).

この主張において pは seminormでなくても良い.　よって p(x) < 0となる点があっても良い.

Proof.

S :=

{
(X ′,Λ′)

∣∣∣∣∣
X ′ ⊂ X;X ′ ⊃M となる部分空間.
Λ′ : X ′ → R となる線型写像でΛ′|M ≡ f かつ
−p(−x′) ≤ Λ′(x′) ≤ p(x′) (∀x′ ∈ X ′)となるものがある.

}

S に順序≤”を
(X1,Λ1) ≤ (X2,Λ2)⇐⇒ X ′

1 ⊂ X ′
2 かつ Λ2|X1 ≡ Λ1,

として入れると, S は帰納的集合になり, Zornの補題より, 極大元 (X̃, Λ̃) がある.

よって次の主張を示せば良い.

58



Claim 2.5.2. X̃ = X.

X̃ 6= X. とし, y ∈ X \ X̃ をとる. この時任意の x, x′ ∈ X̃.において,

Λ̃(x) + Λ̃(x′) = Λ̃(x+ x′) ≤ p(x+ x′) ≤ p(x− y) + p(x′ + y)

である. よって, Λ̃(x)− p(x− y) ≤ p(x′ + y)− Λ̃(x′).であるので, x′を固定すれば, 左の supが存
在する.

α := sup{Λ̃(x)− p(x− y) | x ∈ X}

とおく. 任意の x, x′ ∈ X̃ について,

Λ̃(x)− p(x− y) ≤ α ≤ p(x′ + y)− Λ̃(x′)

今 X̃ ′ := X̃ + Ry かつ, Λ̃′ : X̃ ′ → R; Λ̃′(x+ ty) := Λ̃(x) + tα.とする. この時 Λ̃′ : X̃ ′ → R は線
型写像で Λ̃′|M ≡ f である. さらに, 任意の x+ tg ∈ X̃ ′について,

• t = 0 ならば Λ̃′(x) = Λ̃(x) ≤ p(x+ ty).

• t > 0 ならば α ≤ p(x+ y)− Λ̃(x)に注目して

Λ̃′(x+ ty) = Λ̃(x) + tα = t
(
Λ̃(1tx) + α

)
≤ tp(1tx+ y) = p(x+ ty).

• t < 0 ならば, t = −|t|,かつ Λ̃(x)− p(x− y) ≤ αに注目して,

Λ̃′(x− |t|y) = |t|(Λ̃( 1
|t|x)− α) ≤ |t| p(

1
|t|x− y) = p(x+ ty).

以上より,任意の x + ty ∈ X̃ ′ について, Λ̃′(x + tg) ≤ p(x + tg)であるので, (X̃ ′, Λ̃′) ∈ S かつ
(X̃ ′, Λ̃′) ≥ (X̃, Λ̃) である. しかし, X̃ ′ 6= X̃ なので, これは X̃, Λ̃) が極大元に矛盾する, よって
X̃ = X.

Theorem 2.5.3. [Rud, Thm6.26] Λ ∈ D′(Ω)かつ K ⊂ Ωコンパクトとする．この時ある
f : Ω→ C連続関数と α ∈ Zn+があって, 任意の ϕ ∈ DK について,

Λ(ϕ) = (−1)|α|
∫
Ω
f · (Dαϕ) dx

なお上の αについては, [Rud, Thm6.8]によってある C > 0, N ∈ Z≥0で Λ(ϕ) ≤ C‖ϕ‖N (∀ϕ ∈
DK) となるものが存在するが, そのN を取ってきて α = (N + 2, . . . , N + 2)と定める.

Proof. Q := {(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1 for ∀i}, ととる. 0 ∈ Ωとして良い. またスケール変
換して,K ⊂ (−1

2 ,
1
2)
n.として良い.
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K を平行移動して K ⊂ Q◦とする. そしてK 6⊂ (−1
2 ,

1
2)
n かつK 63 (0, . . . , 0)を仮定する.

T := ∂
∂x1

∂
∂x2
· · · ∂

∂xn
.とし任意の y = (y1, . . . , yn) ∈ Q,について,

Q(y) := [0, y1]× [0, y2]× · · · × [0, yn]

とする. 任意の ϕ ∈ DQ ⊂ D(Rn)と x = (x1, . . . , xn) ∈ Q,について平均値の定理よりある
α ∈ (0, 1)があって

|ϕ(x)| =
∣∣∣∣ϕ(x1, . . . , xi, . . . , xn)− ϕ(x1, . . . , 0, . . . , xn)1− 0

∣∣∣∣
≤
∣∣∣∣ϕ(x1, . . . , xi, . . . , xn)− ϕ(x1, . . . , 0, . . . , xn)xi − 0

∣∣∣∣
=

∣∣∣∣ ∂∂xiϕ(x1, . . . , αxi, . . . , xn)
∣∣∣∣

となる. よって
max
x∈Q
|ϕ(x)| ≤ max

x∈Q

∣∣ ∂
∂xi
ϕ(x)

∣∣ (∀i) (2.5.1)

さらに
ϕ(y) =

∫
Q(y)

Tϕdx = T
(∫

Q(y)
ϕdx

)
(2.5.2)

[Rud, Thm 6.8]よりある C > 0 と N ∈ Z≥0 があって

|Λ(ϕ)| ≤ C‖ϕ‖N (∀ϕ ∈ DK).

である. よって (2.5.1)と (2.5.2)より

|Λ(ϕ)| ≤ C‖ϕ‖N ≤
(2.5.1)

C ·max
x∈Q
|(TNϕ)(x)| = C ·max

y∈Q

∣∣∣∫
Q(y)

(TN+1ϕ) dx
∣∣∣

≤ C ·max
y∈Q

∫
Q(y)
|TN+1ϕ| dx ≤ C

∫
Q
|TN+1ϕ| dx.

よって
|Λ(ϕ)| ≤ C

∫
Q
|TN+1ϕ| dx (2.5.3)

である. (2.5.2)から TN+1 : DK → DK は単射. よって Im(TN+1) ⊂ DK 上において, 線型
写像 Λ1 := Λ ◦ (TN+1)−1 : Im(TN+1) → Rを定義することができる. Im(TN+1) ⊂ DK 上で
Λ1 ◦ TN+1 = Λ.である.
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ϕ ∈ Im(TN+1)について, (2.5.3)より

Λ1(ϕ) ≤ |Λ1(ϕ)| ≤ C
∫
K
|ϕ| dx (∀ϕ ∈ DK).

よって Hahn-Banachの定理 2.5.3を (Im(TN+1) ⊂ L1(K),Λ1, C
∫
| · |dx)に適応して, ある G :

L1(K)→ R で G|Im(TN+1) ≡ Λ1 かつ

G(ϕ) ≤ C
∫
K
|ϕ| dx (∀ϕ ∈ L1(K)).

となるものがある. よってあるK 上の bounded Borel関数 gであって, G(ϕ) =
∫
K gϕ dxとなる.

そして, Λ = Λ1 ◦ TN+1であるので, 任意の ϕ ∈ DK について,

Λ(ϕ) =

∫
K
g · (TN+1ϕ) dx

である. そこで, gをRn上の関数に 0拡張する　 (つまり g(x) = 0(∀x /∈ K)とする.) f : Rn → R
を

f((x1, . . . , xn)) :=

∫ x1

−∞
· · ·
∫ xn

−∞
g(x) dx1 · · · dxn.

として定義する. これは Lesbegue微分定理からほとんど至るところ微分可能である. ライプニッ
ツ則から任意の iについて ∂

∂xi
(f · (TN+1ϕ)) =

(
∂
∂xi
f
)
· (TN+1ϕ)+ f ·

(
∂
∂xi
TN+1ϕ

)
. である. よっ

て任意の ϕ ∈ DK について,∫
K
f ·
( ∂

∂xi
TN+1ϕ

)
dx = −

∫
K

( ∂

∂xi
f
)
· (TN+1ϕ) dx

となる. 以上より

Λ(ϕ) =

∫
K
g · (TN+1ϕ) dx =

∫
K

( ∂

∂x1

∂

∂x2
· · · ∂

∂xn
f
)
·
(
TN+1ϕ

)
dx

= −
∫
K

( ∂

∂x2
· · · ∂

∂xn
f
)
·
( ∂

∂x1
TN+1ϕ

)
dx

= (−1)n
∫
K
f · ∂

∂x1

∂

∂x2
· · · ∂

∂xn
TN+1ϕdx

= (−1)N+2

∫
K
(−1)n+N+2f · TN+2ϕdx.

よってこの (−1)n+N+2f がほしいものである.

Theorem 2.5.4. [Rud, Theorem 6.27 ] Λ ∈ D′(Ω), V ⊂ Ω ⊂ Rn open. K ⊂ Ωをコンパ
クト集合とする. SuppΛ ⊂ K かつK ⊂ V かつ Λ が order N を持つと仮定する.

この時ある {fβ} ⊂ inC0(Ω)で, β = (β1, . . . , βn)は βi ≤ N + 2となる multi-indexで,
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Supp f ⊂ V かつ
Λ =

∑
β

DβΛfβ ,

となるものが存在する

Proof. W ⊂ Ωi open でK ⊂W ⊂W ⊂ V かつ W コンパクトなものを取る
2.5.3 を Λ と W に適応すると, Λ の orderは N であるので, ある α = (N + 2, . . . , N + 2) と
f : Ω→ C連続があって

Λ(φ) = (−1)|α|
∫
Ω
f · (Dαφ) dx (∀φ ∈ D(W )) (2.5.4)

となる. そこで g ∈ C∞
0 (Ω) で g|W ≡ 1 かつ Supp g ⊂ V となるものを考えることで,Supp f ⊂ V

と仮定して良い. ( f を fgに取り替える.)

ψ ∈ C∞(Ω) で, ψ|K ≡ 1 かつ Suppψ ⊂W のものを固定する. 2.4.4(c)から Λ = ψΛである.

任意の φ ∈ D(Ω)について (2.5.4)から

Λ(φ) = ψΛ(φ) = Λ(ψφ) = (−1)|α|
∫
Ω
f(Dα(ψφ))dx

= (−1)|α|
∫
Ω
f ·
∑
β≤α

CαβD
α−βψDβφdx

=
∑
β≤α

∫
Ω

(
(−1)|α|CαβfDα−βψ

)
Dβφdx

よって fβ := (−1)|α|−|β|CαβfD
α−βψとおくと

Λ(φ) =
∑
β≤α

(−1)|β|
∫
Ω
fβD

βφdx =
∑
β≤α

(DβΛfβ )(φ).

Theorem 2.5.5. [Rud, Theorem 6.28] Λ ∈ D′(Ω)とする. この時任意の α; multi-index

について, ある gα ∈ C0(Ω)があって次を満たすものが存在する.

• 任意のコンパクト集合K ⊂ Ω について, {α ∈ Zn+ | Supp gα ∩K 6= ∅} は有限集合
• Λ =

∑
αD

αΛgα.

さらに Λが有限の orderを持つならば, 有限個の gαを除いて gα ≡ 0 となるように取れる.

つまり, 超関数はDαと Λgαで形式的にかける.
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Proof. 次の claimを先に示す.

Claim 2.5.6. 任意の i = 1, 2, . . . ,について, あるQi ⊂ Vi ⊂ Ω となるコンパクト集合Qiと
open Viがあって, 任意のコンパクト集合K ⊂ Ωについて, {i ∈ Z+ | Vi ∩K 6= ∅} は有限
集合となるようにできる.

Proof. 1.7.2より
K1 ⊂ K2 ⊂ · · · ⊂ Ki ⊂ · · · ⊂ Ω

となるコンパクト集合列Ki　でKi ⊂ int(Ki+1)かつ Ω =
⋃∞
i=1 int(Ki)となるものが存在する.

K0 := ∅, Q1 := K1, V1 := int(K2) とする. 以下帰納的に

Qi := Ki \ int(Ki−1), Vi := int(Ki+1) \Ki−2 (i ≥ 2).

と定義する. (要は Viは三つ飛ばしにする.) すると

• Qi ⊂ Vi (理由はKi ⊂ int(Ki+1 かつ Ki−2 ⊂ int(Ki−1)なので.)

• Qi;コンパクト (理由はKiコンパクトかつQi ⊂ Kiclosedなので)

• Vi open.

• Ω =
⋃
iQi (理由は帰納法から,

⋃n
i=1Qi = Knが言えるから)

任意のK について, あるm があって, K ⊂
⋃m
i=1 int(Ki) = int(Km) ⊂ Km. よってK ∩ Vm′ = ∅

が m′ > m+ 2で成り立ち, {i ∈ Z+ | Vi ∩K 6= ∅} ⊂ {1, . . . ,m+ 1}は有限である.

2.3.3と同じ議論より (Qi上で 1で supportがViに入るC∞級関数を構成する1ことで),あるψi ≥ 0

となる {ψi}i∈Z+ ⊂ D(Ω) であって次を満たすものが存在する.

• 任意の i ∈ Z+について Suppψi ⊂ Vi
• 任意の x ∈ Ωについて,

∑∞
i=1 ψi(x) = 1. ただし左は有限和である.

• 任意の i ∈ Z+について, あるWi ⊃ Qiopen があって, {j ∈ Z+ | ψj |Wi 6= 0} は有限集合

すると Λ =
∑∞

i=1 ψiΛである. 2.5.4より, 任意の i ∈ Z+について, ある Vi上の連続関数の有限集
合族 {fi,α}αがあって,

ψiΛ =
∑
α

DαΛfi,α.

とかける. そこで, gα :=
∑∞

i=1 fi,α. とおく.

任意の x ∈ Ωについて, Vi の構成から, {i ∈ Z+ | x ∈ Vi} は有限集合である. よって gα(x) =∑∞
i=1 fi,α(x) は有限和である. つまり, gα ∈ C0(Ω).

1C∞ 級関数として構成できるのも 2.3.3の 1の分割を使う
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Claim 2.5.7. 任意のコンパクト集合 K ⊂ Ω について {α ∈ Zn+ | Supp gα ∩K 6= ∅}は有限
集合.

Proof. {Vi}の構成から, {i ∈ Z+ | Vi ∩K 6= ∅}は有限集合である. よって,

Supp gα ∩K ⊂
⋃

Vi∩K ̸=∅

Supp fi,α ∩K

となる.

{fi,α}αは有限個で, 考える iも有限個なので, あるM ∈ Z≥0があって, 任意の |α′| > M となる α′

について, Supp gα′ ∩K = ∅となる. {α ∈ Zn+ | Supp gα ∩K 6= ∅}は有限集合.

任意の φ ∈ D(Ω)について

Λ(φ) = Λ
(∑

i

ψiφ
)
=
∑
i

(ψiΛ)(φ)

=
∑
i

(∑
α

DαΛfi,α
)
(φ)

=
∑
α

(DαΛgα)(φ) =
(∑

α

DαΛgα
)
(φ),

よって Λ =
∑

αD
αΛgαとなる.

2.6 Convolutions

記法

• D := D(Rn), D′ := D′(Rn),
• u : Rn → C, x ∈ Rnについて

ũ : Rn → C, ũ(x) = u(−x),

τxu : Rn → C, τxu(y) = u(y − x).

任意の u, v : Rn → Cについて, convolution u ∗ v を次で定める:

u ∗ v : Rn → C, (u ∗ v)(x) :=
∫
Rn

u(y)v(x− y)dy
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この積分 u ∗ vは, ほとんど至ることころの x ∈ Rnで Lebesgue積分 ∫Rn u(y)v(x− y)dy が考えら
れる時にのみ定義される. このとき, 定義から∫

Rn

u(y)v(x− y)dy =

∫
Rn

u(y)τxṽ(y)dy = Λu(τxṽ).

Definition 2.6.1. 任意の u ∈ D′, φ ∈ D, x ∈ Rnについて,

(u ∗ φ)(x) := u(τxφ̃).

と定める. u ∗ φ : Rn → Cである.

Definition 2.6.2. 任意の u ∈ D′, φ ∈ D, x ∈ Rnについて,

(τxu)(φ) := u(τ−xφ)

と定義する.

Remark 2.6.3. 次が成り立つ.∫
Rn

τxu(y)v(y)dy =

∫
Rn

u(y) · τ−xv(y)dy = Λu(τ−xv).

また [Rud, Theorem 6.8]から, τxu ∈ D′でもある.

Theorem 2.6.4. [Rud, Theorem 6.30] u ∈ D′, φ, ψ ∈ Dとする時次が成り立つ.

(a) x ∈ Rnについて, τx(u ∗ φ) = (τxu) ∗ φ = u ∗ (τxφ)
(b) u ∗ φ ∈ C∞. 任意の α ∈ Zn+についてDα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ)

(c) u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ

Proof. [(a)] τx(u ∗ φ)(y) = (u ∗ φ)(y − x) = u(τy−xφ̃).

(τxu) ∗ φ(y) = (τxu)(τyφ̃) = u(τ−x(τyφ̃)) = u(τy−xφ̃).

以上より, u ∗ (τxφ)(y) = u(τy(τxφ̃)) = u(τyτ−xφ̃) = u(τy−xφ̃) となるので言える.

[(b)] Dα(τxφ̃) = (−1)|α|τx(D̃αφ) であるので,

(Dαu) ∗ φ(x) = (Dαu)(τxφ̃) = (−1)|α|u(Dα(τxφ̃))

= u(τx(D̃αφ)) = (u ∗ (Dαφ))(x),
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よって (b)の中辺と右辺は等しい
今 e ∈ Rn; unit vectorとし, r ∈ R \ {0}について ηr =

1
r (τ0 − τre) とする.

ηr(φ)(x) =
φ(x)− φ(x− re)

r
=
φ(x− re)− φ(x)

−r

である. (a)より ηr(u ∗ φ) = u ∗ (ηr(φ))であるので, 方向微分を考えることで,

ηr(φ)→ Deφ (r → 0)

がD上で言える. よって任意の x ∈ Rnについて, D上で

τx(η̃r(φ))→ τx(Deφ) (r → 0)

となる. 以上より r = −tにして

lim
t→0

(u ∗ φ)(x+ te)− (u ∗ φ)(x)
t

= lim
r→0

(ηr(u ∗ φ))(x)

= lim
r→0

u ∗ (ηr(φ))(x) = lim
r→0

u(τx ˜(ηr(φ)))

= u(τx(̃Deφ)) = (u ∗ (Deφ))(x).

これより議論を繰り返して u ∗ φ ∈ C∞と (b)の中辺と左辺は等しいことがわかる.

[(c)] 任意の x ∈ Rnについて, 次が成り立つ

• (u ∗ (φ ∗ ψ))(x) = τ−x((u ∗ (φ ∗ ψ)))(0) =
(a)

(u ∗ (τ−x(φ ∗ ψ)))(0) = (u ∗ (φ ∗ τ−xψ))(0)

• ((u ∗ φ) ∗ ψ)(x) = τ−x(((u ∗ φ) ∗ ψ))(0) = (((u ∗ φ) ∗ τ−xψ))(0).

以上より (u ∗ (φ ∗ ψ))(0) = ((u ∗ φ) ∗ ψ)(0).を示せば良い.

(φ̃ ∗ ψ)(t) =
∫
Rn

φ(y)ψ(t− y)dy =

∫
Rn

φ(s− t)ψ(−s)ds =
∫
Suppψ

φ(s− t)ψ(−s)ds

であるので,

(u ∗ (φ ∗ ψ))(0) = u
(∫

Suppψ
φ(s− t)ψ(−s)ds

)
=

∫
Suppψ

(u(τsφ̃))ψ(−s)ds. (2.6.1)

さて,
∫
Suppψ φ(s − ·)ψ(−s)ds の部分をリーマン積分として解釈する. 今 r ∈ R≥0 で Suppψ ⊂

[−r, r]nとなるものを一つ固定する. 任意の ` ∈ Z>0と k = (k1, . . . , kn) ∈ {0, . . . , `− 1}nについて

∆k :=
n∏
i=1

[
− r + 2r

ki
`
, −r + 2r

ki + 1

`

]
.
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と定義する. Fk(t) :=
∫
∆k
φ(s− t)ds.とする. すると次が言える

• SuppFk ⊂ [−r, r]n \ Suppφ, そして, SuppFkはコンパクトかつ ` と kによらない.

• Fk ∈ C∞ なぜならば, SuppFk コンパクトで φ ∈ C∞であるので, 微分と積分が交換でき
るから. 特にDαFk(t) = (−1)|α|

∫
∆k
Dαφ(s− t)ds

)
.

よって Fk ∈ Dである. これより, 中間値の定理を n回使うことである xk ∈ ∆k であって,

Fk(t) = φ(xk − t) ·
(
2r
ℓ

)n
, (2.6.2)

となるものが存在する. よって∫
Suppψ

φ(s−t)ψ(−s)ds = lim
ℓ→∞

∑
k∈{0,...,ℓ−1}n

φ(xk−t)ψ(−xk)
(
2r
ℓ

)n
= lim

ℓ→∞

∑
k∈{0,...,ℓ−1}n

ψ(−xk)Fk(t).

(2.6.3)

よって, SuppFk は `, k に依らないコンパクト集合上に含まれていて, コンパクト集合上での各点
収束は一様収束が同じなので, D上の収束と同じである. つまり

lim
ℓ→∞

∑
k

ψ(−xk)Fk(t) =
∫
Suppψ

φ(s− t)ψ(−s)ds in D (2.6.4)

である. 以上より

(u ∗ (φ ∗ ψ))(0) =
(2.6.1)

u
(∫

Suppψ
φ(s− t)ψ(−s)ds

)
=

(2.6.4)
u
(

lim
ℓ→∞

∑
k

ψ(−χk)Fk(t)
)

=
(2.6.3)

lim
ℓ→∞

∑
k

ψ(−χk)u(Fk(t))

一方でリーマン積分の定義から,

((u ∗ φ) ∗ ψ)(0) =
(2.6.1)

∫
Suppψ

(u(τsφ)) · ψ(−s)ds

=
(2.6.4)

lim
ℓ→∞

∑
k

u(τxkφ)ψ(−xk)
(
2r
ℓ

)n
= lim

ℓ→∞

∑
k

u(φ(xk − t))ψ(−xk)
(
2r
ℓ

)n
=

(2.6.2)
lim
ℓ→∞

∑
k

ψ(−xk)u(Fk(t))

よって (u ∗ (φ ∗ ψ))(0) = ((u ∗ φ) ∗ ψ)(0) がいえて (c)の主張もいえた.

67



Remark 2.6.5. 2.6.4の別証明 G(s, t) := φ(s − t)ψ(−s) とおくとあるK ⊂ Rn があって, 任意の
s ∈ Rnについて Supp (t 7→ G(s, t)) ⊂ K である. よって 2.5.3からある f ∈ C0, αとmulti-index

αがあって
u
(∫

Rn

G(s, t)ds
)
=

∫
Rn

(−1)|α|f ·Dα
(∫

Rn

G(s, t)ds
)
dt,

u(G(s, t)) =

∫
Rn

(−1)|α|f ·DαG(s, t) dt.

となるものが存在する. このサポートがコンパクトなので, 微分と積分を交換するためいえた.

Definition 2.6.6. [Rud, Definition 6.31] hj ∈ Dの列 {hj}j≥1が”approximate identity”

on Rn を持つとは, ある h ∈ Dで h ≥ 0 かつ ∫
Rn h(x)dx = 1となるものがあって, 任意の

j ∈ Z+について
hj(x) = jnh(jx) (j = 1, 2, 3, . . .)

が成り立つこととする.

Lemma 2.6.7. {hj}j≥1 ”approximate identity” on Rnを持つとする. f ∈ C0について,

任意の t ∈ Rn について
lim
j→∞

(f ∗ hj)(t) = f(t)

Proof. 任意の j ∈ Z+についてKj :=
1
j Supphとおくと

(f ∗ hj)(t) = (hj ∗ f)(t) :=
∫
Rn

(jnh(jx)) · f(t− x) dx

今”approximate identity” より ∫Rn j
nh(jx) dx =

∫
Rn h(y) dy = 1. よって

mj := inf{f(t− x) | x ∈ Kj} ≤ (f ∗ hj)(t) ≤ sup{f(t− x) | x ∈ Kj} =:Mj

よって
mj =

∫
Rn

(jnh(jx)) ·mdx ≤ (f ∗ hj)(t) ≤
∫
Rn

(jnh(jx)) ·M dx =Mj

f は連続なので, limj→∞Mj −mj = 0よって limj→∞(f ∗ hj)(t) = f(t).

Lemma 2.6.8. [Rud, Theorem 6.32] {hj}j≥1 ”approximate identity” on Rnを持つとす
る. Φ ∈ D, u ∈ D′.

次が成り立つ

(a) limj→∞Φ ∗ hj = Φ in D
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(b) limj→∞ u ∗ hj = u in D′

Proof. [(a)] Cone(Supph) := {sx|x ∈ Supp(h), s ∈ [0, 1]}とする. これは h ∈ Dよりコンパクト
である. Supphj =

1
j Supph ⊂ Cone(Supph)である. よって任意の j ∈ Z+について

Supp(Φ ∗ hj) ⊂ SuppΦ + Supphj ⊂ SuppΦ + Cone(Supph).

である.( x ∈ SuppΦ かつ t− x ∈ Supphj ならば, Φ(x)hj(t− x) 6= 0 であることに注意) よって任
意の j ∈ Z+, multi-indexα, Φ ∈ Dのサポートがコンパクトなので,

Supp(Dα(Φ ∗ hj)) = Supp(DαΦ ∗ hj) ⊂ SuppΦ + Cone(Supph)

となる. 任意の t ∈ SuppΦ+Cone(Supph)について, 2.6.7より limj→∞(Φ ∗ hj)(t) = Φ(t) となる
のでDの収束がいえる.

[(b)] {hj}j≥1 ”approximate identity” on Rnを持つので, {h̃j}j≥1も同じ性質を持つ. よって

u(Φ) =
2.6.7

lim
j→∞

u(h̃j ∗ Φ) =
2.6.4(b)

lim
j→∞

(u ∗ ˜̃
hj ∗ Φ)(0)

= lim
j→∞

(u ∗ (hj ∗ Φ̃))(0) =
2.6.4(c)

lim
j→∞

((u ∗ hj) ∗ Φ̃)(0)

= lim
j→∞

∫
Rn

(u ∗ hj)(s) Φ̃(−s) ds = lim
j→∞

∫
Rn

(u ∗ hj)(s)Φ(−s) ds

= lim
j→∞

Λu∗hj (Φ).

が成り立つので, いえた. (D′の位相は各点収束位相である)

Definition 2.6.9. [Rud, Definition 1.44] Ω ⊂ Rn open, C0(Ω) Ω上の連続関数の集合と
する.

C0(Ω)の位相を次で定義する:

K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ Ω

というコンパクト集合の列を一つとる. 1.7.2によって, n = 1, 2, · · ·について,

Vn := {f ∈ C0(Ω) | sup
x∈Kn

|f(x)| < 1
n}

とおくと, Vn (n = 1, 2, · · · ) が 0の local baseとなる C0(Ω) の位相が存在する.
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Theorem 2.6.10. [Rud, Theorem 6.33]

(a) u ∈ D′ について, L : D → C∞を

L(ϕ) := u ∗ ϕ

とする. (u ∗ ϕ ∈ C∞は 2.6.4より) この時 L は連続な線型写像で任意の ϕ ∈ D と
x ∈ Rnについて

τx(L(ϕ)) = L(τxϕ) (2.6.5)

(b) 逆に連続な線型写像 L : D → C0(Rn)が (2.6.5)を満たすならば, u ∈ D′ で L(ϕ) =

u ∗ ϕとなるものがただ一つ存在する. 特に Im(L) ⊂ C∞.

Proof. [(a)] (2.6.5)は 2.6.4(a)より. 線形も明らか. よって Lが連続を示せば良い. C∞は locally

convexなので, 1.8.11より任意のコンパクト集合K ⊂ Rnについて L|DK
: DK → C∞が連続を言

えば良い.

DK と C∞ は F -space (1.1.6参照)なので closed graph theorem (2.6.11)より

{(x, Lx) ∈ DK} ⊂ DK × C∞

が closedを示せば良い. よって

• ϕi → ϕ in DK かつ
• L(ϕi) = u ∗ ϕi → f in C∞

が成り立つ時に, u ∗ ϕ = f が成り立つことを示せば良い.

これは x ∈ Rnについて

f(x) = lim
i→∞

(u ∗ ϕi)(x) =
2.6.1

lim
i→∞

u(τxϕ̃i) = u

(
lim
i→∞

τxϕ̃i

)
=

τxφ̃i → τxφ̃ in D
u(τxϕ) = (u ∗ ϕ)(x)

が成り立つのでいえた.

[(b)] u : D → Cを u(ϕ) := (L(ϕ))(0)で定める.

まず u ∈ D′を示す. u が線形かつ u(ϕ) = ev0 ◦ L ◦ ϕ̃である. 以上より

·̃ : D → D and ev0 : C
0(Rn)→ C

が連続を示せば良い. ·̃が連続は明らか. ev0の連続性も 0 ∈ C0(Rn)で連続を示せばよく (平行移
動で不変だから), これは 0 ∈ U ⊂ C openについて, あるN ∈ Z≥0 があって, ev0(Vn) ⊂ U とな
ることより言える. よって u は連続でいえた.
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次に ϕ ∈ Dについて L(ϕ) = u ∗ ϕを示す. (2.6.5)より

(L(ϕ))(x) =
def

(τ−x(L(ϕ)))(0) =
(2.6.5)

(L(τ−xϕ))(0) =
def
u(τ̃−xϕ) = u(τxϕ̃) =

2.6.1
(u ∗ ϕ)(x). (2.6.6)

よっていえた.

このような uがただ一つであることを示す. u, u′ ∈ D′ で L(ϕ) = u ∗ ϕ = u′ ∗ ϕであるとすると

(L(ϕ))(0) = (u ∗ ϕ)(0) = u(ϕ̃).

となる. よって同様にして L(ϕ)(0) = u′(ϕ̃).であるので言えた.

closed Graph Theoremとは以下のものである.

Theorem 2.6.11. [Rud, Theorem 2.15] Γ : X → Y が F space 上の線型写像とする,

G := {(x,Γx) ∈ X} ⊂ X × Y が閉集合ならば, Γは連続.

Definition 2.6.12. [Rud, Definition 6.34]

u ∈ D′ で, Suppuがコンパクトとする. 2.4.4, [Rud, Theorem 6.32]によりある連続線型汎
函数

ũ ∈ (C∞)′ := {ϕ : C∞ → C | ϕ 連続線型 }
があって, ũ|D = uとなるものがある. (以下, ũ も uとかく.)

このとき任意の ϕ ∈ C∞について, u ∗ ϕ : Rn → C を

(u ∗ ϕ)(x) := u(τxϕ̃)

として定義する.

Remark 2.6.13 (ũの構成のおさらい). u ∈ D′ で, Suppuがコンパクトとする. ũの構成は次のと
おり (詳しくは 2.4.4参照のこと.)

ψ ∈ D′ で, ψ|Suppu ≡ 1なものをとる. すると任意の f ∈ C∞,について. u(ψf) は ψに依存しな
いことが言える. よって,

ũ(f) := u(ψf).

と定める. 2.4.4, [Rud, Theorem 6.32] から次が言える.

(a) 任意の f ∈ C∞について. Supp f ∩ Suppu = ∅ ならば ũ(f) = 0. 特に f, g ∈ C∞で f = g

が Suppu上で成り立つならば, ũ(f) = ũ(g)が成り立つ.

(b) Suppu = ∅ ならば ũ = 0.
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Theorem 2.6.14. [Rud, Theorem 6.35] u ∈ D′ で, Suppuがコンパクトとする. ϕ ∈ C∞,

ψ ∈ D について次が成り立つ.

(a) τx(u ∗ ϕ) = (τxu) ∗ ϕ = u ∗ (τxϕ) (∀x ∈ Rn)
(b) u ∗ ϕ ∈ C∞ and Dα(u ∗ ϕ) = (Dαu) ∗ ϕ = u ∗ (Dαϕ),

(c) u ∗ ψ ∈ D,
(d) u ∗ (ϕ ∗ ψ) = (u ∗ ϕ) ∗ ψ = (u ∗ ψ) ∗ ϕ

ϕ ∈ Dの場合は, (サポートコンパクトの仮定なしに), 2.6.4で言えている. そのため証明もコンパ
クトサポートの場合に帰着させる.

Proof. (a)と (b)は 2.6.4, [Rud, Theorem 6.30]と同じ ((a)は定義に基づいた計算, (b)も同じ)

[(c)] 非自明なのはサポートがコンパクトなること.

Supp(τxψ̃) = {t ∈ Rn | τxψ̃(t) = ψ(x− t) = 0} = {x} − Suppψ.

である. ただし {x} − Suppψ := {x− t | t ∈ Suppψ}とする. よって x ∈ Rnについて,

Suppu ∩ ({x} − Suppψ) = ∅⇒ (u ∗ ψ)(x) = u(τxψ̃) = 0

である. 以上より Supp(u ∗ ψ) ⊂ Suppu+ Suppψである. よって Supp(u ∗ ψ)はコンパクトであ
り. u ∗ ψ ∈ Dである.

[(d)] 示すことは, 任意の x ∈ Rnについて

(u ∗ (ϕ ∗ ψ))(x) = ((u ∗ ϕ) ∗ ψ)(x) = ((u ∗ ψ) ∗ ϕ)(x)

である. まず x = 0に帰着できることを示す. これは 2.6.4(c)の証明と同じである. 実際 2.6.4(c)

において

• (u ∗ (ϕ ∗ ψ))(x) = τ−x((u ∗ (ϕ ∗ ψ)))(0) = (u ∗ (τ−x(ϕ ∗ ψ)))(0) = (u ∗ (ϕ ∗ τ−xψ))(0)
• ((u ∗ ϕ) ∗ ψ)(x) = τ−x(((u ∗ ϕ) ∗ ψ))(0) = (((u ∗ ϕ) ∗ τ−xψ))(0).

を示した. (これは定義に基づいた計算なので,今の状況でも成り立つ)また (τ−xψ)(−t) := ψ(x−t)
であるので

((u∗ϕ)∗ψ)(x) =
def

∫
Rn

(u∗ϕ)(t) ·ψ(x− t) dt =
∫
Rn

(u∗ϕ)(t) ·(τ−xψ)(−t) dt = (u∗(ϕ∗(τ−xψ)))(0).

となる. よって, ϕ , ψ を τ−xϕ , τ−xψ に適宜置き換えることで, x = 0を仮定して良い.

以下, 証明のために次を定義する

72



(1) W ⊂ Rnを bounded open でW = −W ⊃ Suppuとなるもの
(2) W ′ ⊂ Rnを bounded open W ′ = −W ′ かつ W ′ ⊃W + Suppψとなるもの.

(3) ϕ0 ∈ Dで, W ′上で ϕ0 = ϕ となるもの. この時W ′ = −W ′上で ϕ̃0 = ϕ̃である.

任意の x ∈W について,

t /∈ {x} − Suppψ ⇒ ψ(x− t) = 0 (2.6.7)

よって

(ϕ∗ψ)(x) =
def

∫
Rn

ϕ(t)ψ(x−t) dt =
(2.6.7)

∫
x−Suppψ

ϕ(t)ψ(x−t) dt =
(3)

∫
x−Suppψ

ϕ0(t)ψ(x−t) dt = (ϕ0∗ψ)(x).

となる. W = −W となるので, W 上で ϕ ∗ ψ = ϕ0 ∗ ψとなる. −W ⊃ Suppuより,

(u ∗ (ϕ ∗ ψ))(0) =
2.6.13(a)

(u ∗ (ϕ0 ∗ ψ))(0). (2.6.8)

一方で
((u ∗ ϕ) ∗ ψ)(0) =

∫
Rn

u(τtϕ̃)ψ(−t) dt =
(2.6.7)

∫
−Suppψ

u(τtϕ̃)ψ(−t) dt.

W ′ と ϕ0の構成から任意の t ∈ Suppψについて ϕ|{−t}+W ≡ ϕ0|{−t}+W である. よって τtϕ̃|W ≡
τtϕ̃0|W である. 以上より

((u ∗ ϕ) ∗ ψ)(0) =
2.6.13

((u ∗ ϕ0) ∗ ψ)(0). (2.6.9)

(c)の証明で Supp(u ∗ ψ) ⊂ Suppu+ Suppψ,であることがわかっているので,

((u ∗ ψ) ∗ ϕ)(0) =
∫
Rn

(u ∗ ψ)(t)ϕ(−t) dt

=
(c)

∫
Suppu+Suppψ

(u ∗ ψ)(t)ϕ(−t) dt

=
(3)

∫
Suppu+Suppψ

(u ∗ ψ)(t)ϕ0(−t) dt = ((u ∗ ψ) ∗ ϕ0)(0).

(2.6.10)

よって (2.6.8)-(2.6.10)により, ϕを ϕ0に取り替えることで, ϕ ∈ Dを仮定して良い. その場合は,

2.6.4, [Rud, Theorem 6.30 (c)]で言えている.

Definition 2.6.15. [Rud, Definition 6.36] u, v ∈ D′ で Suppu または Supp v がコンパク
トであるとする. このとき L : D → C∞を

L(ϕ) := u ∗ (v ∗ ϕ) (ϕ ∈ D).

として定義する.
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Remark 2.6.16. L は well-definedである. もし Suppu がコンパクトならば, u ∈ (C∞)′ である.

一方 2.6.4より v ∗ ϕ ∈ C∞なので well-definedである. もし Supp vがコンパクトならば, 2.6.14

から v ∗ ϕ ∈ Dなので, well-defined.

また任意の x ∈ Rnについて, τxL = Lτxである. これは

(τxL)(ϕ) := τx(L(ϕ)) = τx(u ∗ (v ∗ ϕ)) =
2.6.4,2.6.14

u ∗ (v ∗ (τxϕ)) = L(τxϕ) =: (Lτx)(ϕ)

となるからである.

Lemma 2.6.17. 汎関数 D → Cをϕ 7→ (L(ϕ̃))(0) で定まると, これは distributionである.

Proof. 線形は自明. 連続であることを示せば良い
この汎函数は (˜) : D → D, L : D → C∞ , ev0 : C

∞ → C. の合成である. よって, (˜) が連続より.

ev0 ◦ L が連続を言えば良い.

[1. Supp v コンパクトの場合] 2.6.10より, ϕ 7→ v ∗ϕは連続. また, 2.6.14(c)から v ∗ϕ ∈ D. よっ
て 2.6.10(a)より Lは連続. そして, 2.6.10の証明から ev0は連続. よってOK.

[2. Suppu コンパクトの場合] ev0 ◦ L は次の二つの合成である.

• D 3 ϕ 7→ v ∗ ϕ ∈ C∞ これは 2.6.10(a)より連続.

• C∞ 3 f 7→ u(f̃) ∈ C, これは 2.4.4より連続.

以上より ev0 ◦ Lは連続である.

Definition 2.6.18. [Rud, Definition 6.36] u, v ∈ D′ で Suppu または Supp v がコンパク
トであるとする. u ∗ v : D → C を,

(u ∗ v)(ϕ) := (L(ϕ̃))(0) (ϕ ∈ D).

として定義する. 2.6.17より u ∗ v ∈ D′である.

Remark 2.6.19. 2.6.10(b)の議論から, u ∗ v は

(u ∗ v) ∗ ϕ = L(ϕ) for ∀ϕ ∈ D.

を満たす唯一の distributionである.

Proof. Λを Λ ∗ ϕ = L(ϕ)となる超関数とする時,

(Λ ∗ ϕ)(x) =
def

Λ(τxϕ̃) = Λ(τ̃−xϕ) =
2.6.18

L(τ−xϕ)(0) =
2.6.16

τ−xL(ϕ)(0) (2.6.11)

74



以上より
Λ(ϕ̃) =

def
(Λ ∗ ϕ)(0) =

2.6.11
L(ϕ)(0) = ((u ∗ v) ∗ ϕ)(0) =

def
(u ∗ v)(ϕ̃)

となり Λ = u ∗ vとなる.

Theorem 2.6.20. [Rud, Theorem 6.37] 以下Λ ∈ D′について, SΛ := SuppΛ と略記する.

u, v, w ∈ D′について次が成り立つ.

(a) Su か Sv が cptならば, u ∗ v = v ∗ u.
(b) Su か Sv が cptならば, Su∗v ⊂ Su + Sv.

(c) Su, Sv, Sw のどれか二つが cptならば, (u ∗ v) ∗ w = u ∗ (v ∗ w).
(d) 任意のmulti-index αについて,

Dαu = (Dαδ) ∗ u

である. ここで δ はDiracの超関数 (δ(f) := f(0)) .とする. 特に u = δ ∗ uである.

(e) Su か Sv が cptならば, 任意のmulti-indexαについて,

Dα(u ∗ v) = (Dαu) ∗ v = u ∗ (Dαv).

以上より convolutionは distributionであっても関数の convolutionと同様に扱うことができる.

Proof. [(a)] ϕ,ψ ∈ Dについて,

(u∗v)∗ (ϕ∗ψ) =
2.6.19,2.6.15

u∗ (v ∗ (ϕ∗ψ)) =
2.6.14(d)

u∗ ((v ∗ϕ)∗ψ) =
2.6.14(d)

u∗ (ψ ∗ (v ∗ϕ)) (2.6.12)

• Sv cptならば, 2.6.14(C)より v ∗ φ ∈ D. よって u ∗ (ψ ∗ (v ∗ φ)) =
2.6.14(d)

(u ∗ ψ) ∗ (v ∗ φ).

• Su cptならば, u ∗ (ψ ∗ (v ∗ φ)) =
2.6.14(d)

(u ∗ ψ) ∗ (v ∗ φ).

よってどっちにしろ,

(u ∗ v) ∗ (φ ∗ ψ) =
(2.6.12)

(u ∗ ψ) ∗ (v ∗ φ), (2.6.13)

である. uと vの役割を入れ替えて　

(v ∗ u) ∗ (φ ∗ ψ) =
(2.6.13)

(v ∗ u) ∗ (ψ ∗ φ) = (v ∗ φ) ∗ (u ∗ ψ), (2.6.14)

もいえる. 一方で u ∗ ψ, v ∗ φ ∈ C∞なので

(u∗v)∗(φ∗ψ) =
(2.6.13)

(u∗ψ)∗(v ∗φ) =
C∞ の covolution

(v ∗φ)∗(u∗ψ) =
(2.6.14)

(v ∗u)∗(φ∗ψ) (2.6.15)
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以上より

((u ∗ v) ∗ φ) ∗ ψ =
2.6.4

(u ∗ v) ∗ (φ ∗ ψ) =
(2.6.15)

(v ∗ u) ∗ (φ ∗ ψ) =
2.6.4

((v ∗ u) ∗ φ) ∗ ψ. (2.6.16)

今 ψ を 2.6.6での approximate identity of Rnを持つ列 {hj} とすれば, 2.6.7より

((u ∗ v) ∗ φ)(t) =
2.6.7

lim
j→∞

(((u ∗ v) ∗ φ) ∗ hj)(t) =
(2.6.16)

lim
j→∞

((v ∗ u) ∗ φ) ∗ hj)(t) =
2.6.7

((v ∗ u) ∗ φ)(t).

以上より, 任意の φ ∈ Dについて (u ∗ v) ∗ φ = (v ∗ u) ∗ φであるので, 2.6.19より u ∗ v = v ∗ uで
ある.

[(b)] (a)より Sv cptとして良い. (u, vを入れ替えれるため) 任意の φ ∈ Dについて

(u ∗ v)(φ) =
2.6.18

(u ∗ (v ∗ φ̃))(0) =
2.6.1

u(ṽ ∗ φ̃).

また
Supp(v ∗ φ̃) ⊂

2.6.14(c) の証明内
Sv + Supp φ̃ = Sv − Suppφ,

より, Supp(ṽ ∗ φ̃) ⊂ Suppφ− Sv となる. 以上より, φ ∈ Dについて

Suppφ ∩ (Su + Sv) = ∅⇔ (Suppφ− Sv) ∩ Su = ∅⇒ (u ∗ v)(φ) = 0

よって Supportの定義 2.4.1から Su∗v ⊂ Su + Sv である.

[(c)] (b)より Su, Sv, Sw のどれか二つが cptならば, (u ∗ v) ∗ w や u ∗ (v ∗ w) は well-definedで
ある.

φ ∈ Dについて

(u ∗ (v ∗ w)) ∗ φ =
2.6.15

u ∗ ((v ∗ w) ∗ φ) =
2.6.15

u ∗ (v ∗ (w ∗ φ)). (2.6.17)

Swが cptの場合, w ∗ φ ∈ Dなので,

((u ∗ v) ∗ w) ∗ φ =
(2.6.17),2.6.19

(u ∗ v) ∗ (w ∗ φ) =
(2.6.12)

u ∗ (v ∗ (w ∗ φ)).

よって 2.6.19より u ∗ (v ∗ w) = (u ∗ v) ∗ wである.

Swが cptでない場合, Su cptなので,

u ∗ (v ∗ w) =
(a)
u ∗ (w ∗ v) =

(a)
(w ∗ v) ∗ u =

上の議論
w ∗ (v ∗ u) =

(a)
(v ∗ u) ∗ w =

(a)
(u ∗ v) ∗ w.

よりいえた.
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[(d)] φ ∈ D, x ∈ Rnについて,

(δ ∗ φ)(x) =
2.6.1

δ(τxφ̃) = (τxφ̃)(0) = φ̃(−x) = φ(x),

である. よって, δ ∗ φ = φ である. 以上より

(Dαu)(φ) =
2.6.1

(Dαu ∗ φ̃)(0) =
2.6.14(b)

(u ∗ (Dαφ̃))(0) =
δ∗ϕ=ϕ

(u ∗ (Dα(δ ∗ φ̃)))(0)

=
2.6.14(b)

(u ∗ ((Dαδ) ∗ φ̃))(0) =
2.6.19

((u ∗ (Dαδ)) ∗ φ̃)(0) =
(a)

(((Dαδ) ∗ u) ∗ φ̃)(0)

=
2.6.18

((Dαδ) ∗ u)(φ).

以上よりDαu = (Dαδ) ∗ uでありいえた.

[(e)] Sδ cptなので u, v, δに関して (c)が使える状況にある. よって,

Dα(u ∗ v) =
(d)

(Dαδ) ∗ (u ∗ v) =
(c)

((Dαδ) ∗ u) ∗ v =
(d)

(Dαu) ∗ v,

Dα(u ∗ v) =
(a)
Dα(v ∗ u) =

上の議論
(Dαv) ∗ u =

(a)
u ∗ (Dαv),

であるのでまとめると,

Dα(u ∗ v) = (Dαu) ∗ v = u ∗ (Dαv),
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Chapter 3

Currentの定義
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3.1 Current

M 2nd countablem次元 C∞級多様体とする.

Recall M ⊂ Rmの時 C∞(M)には次の位相を次で入れていた.

K1 ⊂ K2 ⊂ · · · ⊂M というコンパクト集合であって

Ki ⊂ K◦
i+1 and M =

⋃
K◦
i

となるものを一つ固定し, f ∈ C∞(M)について, N ∈ Z+として

PN (f) := max{|Dαf(x)| | |α| ≤ N&x ∈ KN}

VN := max{f ∈ C∞(M) | PN (f) <
1

N
}

を 0の open baseとするような位相を入れていた.

K ⊂M コンパクトに対して

DK(M) := {φ ∈ C∞(M) | Supp(φ) ⊂ K} ⊂ C∞(M)

に対して相対位相を入れて

D(M) :=
⋃

K⊂M |K cpt

DK(M) ∼= lim−→
K

DK(M)
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この colimitは locally convex vector spaceでの colimitである.

Lemma 3.1.1. 1. U,U ′ ⊂ Rm を開集合とする. U ∼= U ′を微分同相とする時, C∞(U) ∼=
C∞(U ′)である. ここでこの同型は位相 Cベクトル空間の同型である

2. M ⊂ Rm 開集合とし, M =
⋃
Uiを可算個の開被覆とする時

C∞(M) ↪→
∏

C∞(Ui) f 7→ {f |Ui}

とすると, C∞(M)の位相はこの直積位相∏C∞(Ui)によって引き起こされる位相と
なる. 特に

C∞(M) ∼= Eq(
∏

C∞(Ui) ⇒
∏

C∞(Ui ∩ Uj))

という位相 Cベクトル空間の同型を得る.

Proof. (1). 以下K1 ⊂ K2 ⊂ · · · ⊂ U というコンパクト集合でC∞(U)の位相を誘導するものを一
つ固定する. Φ : U ′ → U, (x1, . . . , xm) 7→ (y, . . . , ym)を微分同相写像とする. するとK ′

i := Φ(Ki)

によって, C∞(U ′)の位相を誘導する. VN , V
′
N を上の通りとする.

さてその引き戻し

Φ∗ : C∞(U)→ C∞(U ′) f(y) 7→ f ◦ Φ(x) = f(y(x))

が位相 Cベクトル空間の同型を誘導することを示す.

f ∈ C∞(U)について chain ruleより, |α| ≤ N ′について

Dα
xf ◦ Φ(x) :=

∑
|β|≤N ′

(Dβ
y f)(y(x)) · Φαβ(x) (3.1.1)

である.

Φが 0の近傍で連続であることを示せば良い. 任意のN ′について, KN ′ コンパクトなので, KN ′

上では |Φαβ(x)| ≤ CN ′ となる CN ′ が取れる. よって N ′ · 1
N · · ·CN ′ < 1

N ′ となる N をとれば,

f ◦ Φ ∈ Φ∗(VN )について

|Dα
xf ◦ Φ(x)| ≤

(3.1.1)

∑
|β|≤N

|(Dβ
y f)(y(x))|︸ ︷︷ ︸
< 1

N

·|Φαβ(x)| ≤ N ′ · 1
N
· CN ′ <

1

N

よって「任意のN ′ > 0について, あるN > 0があって, Φ∗(VN ) ⊂ V ′
N ′ である」ため Φは 0の近

傍で連続である.

(2) M =
⋃∞
i=1 Uiとする. 各 Uiで

Ki1 ⊂ Ki2 ⊂ · · · ⊂ Ui
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で Ui =
⋃
j K

◦
ij となるコンパクト列をとる. そこでKN :=

⋃N
i=1Ki,N とすると

K1 ⊂ K2 ⊂ · · · ⊂M

であって, Ki ⊂ K◦
i+1 かつM =

⋃
K◦
i となる.

さて∏C∞(Ui)の 0での local baseは

{Vi,N := Vi1,Ni1
× Vi2,Ni2

× · · · × Vil,Nil
×
∏
i ̸=ik

C∞(Ui) | i1 < i2 < · · · < il, Nik ∈ Z+}

となる形のものである. ここで

• i := (i1, i2, . . . , il),N := (Ni1 , Ni2 , . . . , Nil)と定める.

• Vi,N := {f ∈ C∞(Ui) | PN (f) < 1
N }である (ここの定義での PN (f)にはKi,N をつかう.)

一方で VN := {f ∈ C∞(M) | PN (f) < 1
N }(ここの定義での PN (f)にはKiN をつかう.)であり, こ

れは C∞(M)の 0での local baseである. 以上より, 次の二つを示せば良い.

• 任意の i,N について, あるN があって, VN ⊂ Vi,N ∩ C∞(M)が成り立つ.

• 任意のN について, ある i,N があって, VN ⊃ Vi,N ∩ C∞(M)が成り立つ.

VN :=

{
f ∈ C∞(M) | x ∈ KN :=

N⋃
i=1

Ki,N , |α| ≤ N, |Dαf(x)| <
1

N

}

=
def

(
V1,N × V2,N × · · · × VN,N ×

∏
i>N

C∞(Ui)

)
∩ C∞(M)

=
def
V(1,2,...,N),(N,...,N) ∩ C∞(M)

である. これより二つ目の主張が正しいことがいえる. 一つ目の主張は任意の i,N について,

Vmax{i,N} ⊂ Vi,N ∩ C∞(M)

なので言える.

Definition 3.1.2. M 2nd countablem次元C∞級多様体とする. C∞(M)に位相を次のよ
うに入れる.
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まずM =
⋃∞
l=1 Uiで Ui ⊂ Rmとなる countable open coverを一つ固定する. そして,

C∞(M) ↪→
∏
i

C∞(Ui) f 7−→ (f |Ui)

による部分位相を C∞(M)に入れる. つまり,

C∞(M) ∼= Eq(
∏

C∞(Ui) ⇒
∏

C∞(Ui ∩ Uj))

となるように入れる.

Remark 3.1.3. 3.1.2による位相の定義において, Uiの取り方によらない.

Proof. 別の U ′
j をとると細分 Ui ∩ U ′

j が取れる. よって次の図式が考えられる.

C∞(M) �
� /
� v

)

∏
C∞(Ui) � w

*∏
C∞(U ′

j)
� � /

∏
C∞(Ui ∩ U ′

j)

そこで”相対位相の直積は相対位相になる”ので, 3.1.1より言える.

これにより
C∞ : (U ⊂

open
M) 7→ C∞(U)

は Cベクトル空間の sheafとなる. よってK ⊂M に対して

DK(M) := {φ ∈ C∞(M) | Supp(φ) ⊂ K}

として C∞(M)の部分位相を入れる.

D(M) :=
⋃

K⊂M |K cpt

DK(M) ∼= lim−→
K

DK(M)

この colimitは locally convex vector spaceでの colimitである.

[指摘] この colimは存在する？ やっぱり Section 1でやったような位相の入れ方にもう一回戻る?

lim−→K
DK(M)については次回再考.

3.1.1 current続き

以下 [NO]の記法に合わせる. (M 2nd countable m次元 C∞級多様体, k ∈ Z+とする.)1

1おそらく通常の記法とかなり違う記法であると思われる.
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• C(M) :=
{
f :M → C ; 連続}

• E(M) :=
{
f :M → C ; C∞-関数} 普通は”C∞(M)”である.

• Ck(M) := {ϕ : k-forms on M with coeff ∈ C } つまり locallyに

ϕ =
∑
J

ϕJ dz̄
J (dz̄J = dz̄j1 ∧ · · · ∧ dz̄jk)

とかけるものとする. ここで (U ; z1, . . . , zn)を局所座標とし, J = (j1, . . . , jk), ϕJ ∈ C(U)

とする. 特に C0(M) = C(M).

• Ek(M) := {ϕ : k-forms on M with coeff ∈ E } 普通は”Ak(M)”である.

• Kk(M) :=
{
ϕ ∈ Ck(M)

∣∣∣ suppϕ cpt
}
ここで Suppϕ := {x ∈M, ϕ(x) 6= 0} である.

ϕ(x) 6= 0とはある J があって, ϕJ(x) 6= 0であることを意味する.

• Dk(M) :=
{
ϕ ∈ Ek(M)

∣∣∣ suppϕ cpt
}

• A ⊂M について以下のようにおく

KkA(M) :=
{
ϕ ∈ Kk(M)

∣∣∣ suppϕ ⊂ A
}
DkA(M) :=

{
ϕ ∈ Dk(M)

∣∣∣ suppϕ ⊂ A
}

連続 C∞

関数 C(M) E(M)

form Ck(M) Ek(M)

form with support compact Kk(M) Dk(M)

form with support ⊂ A KkA(M) DkA(M)

Recall

U ⊂ Rm open のとき、C(U), E(U) には次のような 位相をいれていた.

コンパクト集合の列:K1 ⊂ K2 ⊂ · · · ⊂ U でKj ⊂ K◦
j+1 かつ　 U =

⋃
j K

◦
j となるものを取り,

f ∈ E(U) に対し

PN (f) := max
{
|Dαf(x)|

∣∣∣ x ∈ KN , |α| ≤ N, ω ∈ KN

}

VN :=
{
f ∈ E(U)

∣∣∣ PN (f) < 1
N

}
を open base at 0(0での開基) とする位相を入れていた.

3.1.1により, これがコンパクト集合の列や座標近傍 U ⊂ Rm によらない
一般の多様体に関してはM に対しては、M =

⋃
j Uj という座標近傍の被覆を使って

E(M) ⊂
∏
E(Uj)
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部分位相を入れた.

Definition 3.1.4. 　 U ⊂ Rm open に対し, Ck(U), Ek(U) に対して位相を

Ek(U) '
∏

J=(j1<···<jk)

E(U) dz̄J

による直積位相を入れる.

これは次のノルム

PN (ϕ) := max
{
|DαϕJ(x)|

∣∣∣ x ∈ KN , |α| ≤ N, ω ∈ KN

}
について, E(U)と同じように位相を入れたものに一致する.

Lemma 3.1.5. 1. U ⊂ Rm, U ′ ⊂ Rm openについて, Φ : U ′ → U が diffeoのとき

Φ∗ : Ek(U)
∼−−→ Ek(U ′)

が C上の位相ベクトル空間の同型を誘導する.

2. U ⊂ Rm open,　 U =
⋃
j Uj：countable open coverについて,

Ek(U) ↪→
∏
j

Ek(Uj)

は部分位相空間となる.

Proof. (1) Φ : U ′(x1, . . . , xm)→ U(y1, . . . , ym) diffeoとして

Φ∗ : Ek(U) :=
∏
J

E(U)dyJ −→ Ek(U ′) := E(U ′)dxJ

は以下のような形になる.

ϕ =
∑
J

ϕJ dy
J 7−→

∑
I

(∑
J

Φ∗ϕJ
∂yJ

∂xI

)
dxI

となる. ここで
∂yJ

∂xI
= det

(∂yjk
∂xil

)
とする. よって 3.1.1で ϕJ 7→ Φ∗ϕJ が連続であることを言っており, 和をとるのも連続なので, 連
続性が言える.
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(2)：

∏
I

E(U)dxI ∼= Ek(U) ↪→
∏
i

Ek(Ui) ∼=
(1)

∏
i

(∏
I

E(U) dz̄I

)
∼=
∏
I

(∏
j

E(Uj) dz̄I
)

となる. 3.1.1でから, E(U) ⊂
∏
j E(Uj)が部分位相になっているのでいえた.

Definition 3.1.6. M 2nd countable m次元 C∞級多様体について Ck(M), Ek(M) に次
のように位相を入れる:

M =
⋃
Uj を座標近傍 Uj の countable coveringとし,

Ek(M) ↪→
∏
j

Ek(Uj)

による部分位相を入れる.

A ⊂M compact subsetについて, DkA(M) ⊂ Ek(M)は closed subspaceである.(下の remark

参照) DkA(M)には Ek(M)の subtopologyををいれる
Kk(M),Dk(M) には、

B :=
{
W ⊂ Dk(M) ; W = non-empty convex balanced

s.t. ∀A ⊂M cpt, W ∩ DkA(M) is open in DkA(M)
}

を 0の local baseとなる位相を入れる.

Remark 3.1.7. 3.1.1から Ek(M)の位相は座標近傍の {Uj} の取り方に依らない. さらにこの位
相は

Ek(M)→ Ek(U)
∣∣∣ U ⊂M loc. coord.

に関する weak top. である (weak topologyに関しては??参照)

DkA(M) ⊂ Ek(M)は closed subspaceなのは x ∈ U ⊂M loc coord. に対し, 代入写像

evxEk(M)→ C⊕J ϕ 7−→ (ϕ(x))J

が連続で, DkA(M) =
⋂
x∈M\AKer(e)vx とかけるので closed subspaceになる.

Kk(M),Dk(M)の位相を詳しくいうと, 1.8.4のように, 集合族 τ を, ”
⋃
i∈I(ϕi +Wi)とかけるも

の”の集まりとする. ただし i ∈ I について, ϕi ∈ Dk(M),Wi ∈ βとする.
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dom local (U ⊂ Rn) global (M mfd.)

form Ck(U), Ek(U) Ck(M), Ek(M)

form support ⊂ A Kk
A(U), Dk

A(U) Kk
A(M), Dk

A(M)

form support compact Kk(U), Dk(U) Kk(M), Dk(M)

という対応がある.

Proposition 3.1.8. M 2nd countablem次元 C∞級多様体について以下が成り立つ.

• Ek(M), Dk
A(M) locally convex, complete metrizable 位相 C ベクトル空間 Heine-

Borel property.

• Ck(M), Kk
A(M) locally convex, complete, metrizable 位相 C ベクトル空間.

Proof. k = 0, M = ∪∞i=1Ui ⊂ Rm などに関してはすでに示している
??によって E0(U) = C∞(U) について, コンパクト集合の列K1 ⊂ K2 ⊂ · · · であって, seminorm

の　 separating family

PN (f) = max{ |Dαf(x)| ; x ∈ KN , |α| ≤ N}

によって位相を入れると, metrizable位相Cベクトル空間であることがわかる. (ここに open cover

が countableがいる)

また??で complete と Heine-Borel propertyを示した. (ここに平均値の定理を使う. つまり微分
可能性がいる. ）よって C(U) しても同じで, Heine-Borel property以外 は 同様にできる。
k¿0，Ek(U), Ck(U) に関しては, seminormを

PN (ϕ) := max
{
|DαϕJ(x)|

∣∣∣ x ∈ KN , J = (j1 < · · · < jk), |α| ≤ N
}

に変えれば同様に言える
Ek(M), Ck(M) に関しては 前回 3.1.1 (2) で与えられたコンパクト集合の列をとる. 具体的に
(M =

⋃
Uj としKi1 ⊂ Ki2 ⊂ · · · ⊂ Uiとなるコンパクト集合列について

KN :=

N⋃
i=1

Ki,N

PN (ϕ) := max
{
|DβϕJ(x)|

∣∣∣ x ∈ KiN ⊂ Ui, J = (j1 < · · · < jk), |ω| ≤ N
}

とするとK1 ⊂ K2 ⊂ · · · ⊂M であり, 同様の議論が回る.

Kk
A(M), Dk

A(M)は それぞれ Ck(M), Ek(M)の閉部分空間なので, 諸性質は保たれる.
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Proposition 3.1.9. (cf. 1.8.7)

(a) V ⊂ Dk(M) convex balanced について, V が openであることは, 任意の compact

A ⊂M について, V ∩Dk
A(M) ⊂ Dk

A(M)であることと同値.

(b) A ⊂M compactとしたとき，Dk
A(M) ⊂ Dk(M)部分位相空間.

(c) E ⊂ Dk(M) boundedならば, ある compact A ⊂M であって, E ⊂ Dk
A(M)となる.

(d) Dk(M)は Heine-Borel property を持つ.

(e) Dk(M) ∼= colimA⊂M cptD
k
A(M). ここでこの同型は locally convex 位相 C ベクトル

空間としての同型である.

また上の主張はDAをKAに変えても成り立つ.

Proof. [(a)] 1.8.6がDk(M)でも言える (1.8.7 (a)の議論が回る)

[(b)] Dk
A(M) ↪→ Dk(M) は, (a)より連続である.

一方，Dk(M) ↪→ Ek(M) も 連続である. なぜならば Ek(M) は locally convex より, convex

balanced な open base at 0 となるものがある. それらをひとつ取っても convex balanced であり,

各 Dk
A(M) に制限しても open なので, Dk(M) の上で openとなる.

[(c)] 対偶を示す. E ⊂ Dk(M)は任意の compact A ⊂ M について, E 6⊂ Dk
A(M)を満たすとす

る.2 この時Eが boundedでないことを示す.

K1 ⊂ K2 ⊂ · · · ⊂M というコンパクト集合であって

Ki ⊂ K◦
i+1 and M =

⋃
K◦
i

となるものをとる. Eの仮定から, ある ϕn ∈ Eと xn ∈ Knであって, ϕn(xn) 6= 0かつ {xn}n∈Z+

は集積点を持たないものが取れる.

そこで xn ∈ Un ⊂M という局所座標をとって,

W := {ψ | max
J
|ψJ(xn)| <

1

n
max
J
|φn,J(c)| for any n}

とおく. (φn =
∑

J φn,Jdx
J と分解する.) W は convex balanced open in D∗(M)である. なぜな

らば, convex balanced は | · | の性質から. 任意の compact A ⊂M に対し, Un ⊂ Aとなる Un は
有限個である. そしてW ∩ DkA(M) は open in D∗

A(M)である. (開集合の有限この共通部分なの
で. )

しかし任意の n ∈ Z+について, ϕn 6∈ nW となるので, E 6⊂ nW であり, Eは boundedではない.

2ある φ ∈ E と x ∈ Aであって, φ(x) ̸= 0ということと同じ.
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[(d)] bounded closed E ⊂ Dk(M) は compactであることを言う. (c) より, ある compact A ⊂M
で, E ⊂ DkA(M). (b) より, DkA(M) ⊂ Dk(M)は部分位相が入るので, E ⊂ DkA(M) の中では
bounded かつ closed. よって 3.1.8のDkA(M)のHeine-Borel Propertyより言える.

[(e)] Dk(M)
f−→ V を locally convex 位相C ベクトル空間のC 線型写像とする. すると次の同値変

形ができる.

f が連続である
⇐⇒ ∀U ⊂ V : convex balanced open に対し, f−1(U) open

⇐⇒ ∀U ⊂ V : convex balanced open. compact A ⊂M に対し f−1(U) ∩ DkA(M) open in DkA(M)

⇐⇒ f |Dk
A(M) : D

k
A(M)→ V 連続

map が C-linearなことについても同様に言えるので,

Hom
(
Dk(M), V

)
' lim←−

A⊂M compact

Hom
(
DkA(M), V

)
.

Definition 3.1.10. {Vλ ⊂ Uλ}λ∈Λ と書いた時, 次を意味する.

• Uλ = (Uλ;x
1
λ, . . . , x

n
λ): local coordinate of M

• Vλ ⊂ Uλ: 相対コンパクトな開集合（つまり Vλ ⊂ Uλ コンパク t）
• M =

⋃
λ Vλ かつ, {Uλ}Λ は locally finite open covering of M . （つまり, 任意の

x ∈M について, ある xの近傍 V で, U ∩ Uλ 6= ∅となる λは有限個)

上のような Vλ の存在に関しては, 多様体が 2nd countableであることから. ( 2nd countable ⇒
para-compact) また定義から Λは可算集合となる.

また局所有限性から任意の compact A ⊂M に対して, A ∩ Uλ 6= ∅ なる λ は 有限である.

Proof. もし無限になるなら, ある xi ∈ A∩Uλi（i = 1, 2, . . .）が取れる. A compactなので, ある
xに収束する部分列 {xik}が取れる. すると xの任意の近傍 V について, V ∩ Uλik 6= ∅が言えて
{Vλ}の仮定に矛盾する

以下 Uλ上の座標 (x1λ, . . . , x
n
λ)と α ∈ Zn≥0 について,

Dα
λ :=

(
∂

∂x1λ

)α1

· · ·
(

∂

∂xnλ

)αn
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また ϕ ∈ Ek(M), λ ∈ Λ, ` ∈ Z≥0について,

‖ϕ‖ℓλ := max
{
|Dα

λϕλ,J(x)|
∣∣ x ∈ Vλ, J, |α| ≤ `} .

最後に ϕ ∈ Dk(M), ` ∈ Z≥0について,

‖ϕ‖ℓ := max
λ
‖ϕ‖ℓλ = max

{
|Dα

λϕλ,J(x)|
∣∣ x ∈ Vλ, J, λ, |α| ≤ `} .

とする . これらは seminormである.

Lemma 3.1.11. {Vλ ⊂ Uλ} を固定する. この時

{‖ · ‖ℓλ | λ ∈ Λ, ` ≥ 0}

は separating family of seminorm on Ek(M) であり, 前に定めた位相 (3.1.6)と同じ位相を
定める.

Proof. Seminormであることはすぐにわかる.

V (λ, `, ε) := {ϕ ∈ Ek(M) | ‖ϕ‖ℓλ < ε}

とする. 示すことは
{
⋂
finite

V (λi, `i, εi) | λi ∈ Λ, `i ≥ 0, εi > 0 }

が local base at 0であることを示せば良い.

V (λ, `, ε)が openであることは, 制限写像 res : Ek(M)→ Ek(Uλ)によって,

{ϕ ∈ Ek(Uλ) | ‖ϕ‖ℓλ < ε} ⊂
∏
J

E0(Uλ)

の pullbackになるので良い.

任意の 0 ∈ V ⊂ Ek(M)となる openについて, ある N � 0と compact subset KN := KN,1 ∪
KN,2 ∪ · · · ∪KN,N であって,

pN (ϕ) := max {|DαϕJ(x)| | x ∈ KN , J, |α| ≤ N} .

としたとき, V は {ϕ ∈ Ek(M)
∣∣ pN (ϕ) < 1

N

}を含む. よってKN ⊂
⋃
ifinite Vλi をとり, `i ≤ N と

し，0 < εi � 1
N をとると ⋂

i

V (λi, `i, εi) ⊂
{
ϕ

∣∣∣∣ pN (ϕ) < 1

N

}
⊂ V
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となりいえた.

Corollary 3.1.12. compact A ⊂ M について, {‖ · ‖(ℓ) | ` ≥ 0} は separating family of

seminorms on DkA(M) であり, 同じ位相を定める.

KkA(M)についても, {‖ · ‖(0) | ` ≥ 0}を考えれば同様の主張が得られる.

Proposition 3.1.13. {Vλ ⊂ Uλ}を固定する.

1. {ϕi}がDk(M)で Cauchy 列であることは, ある compact 部分集合 A ⊂M で {ϕi} ⊂
DkA(M)かつ

lim
i,j→∞

‖ϕi − ϕj‖ℓ = 0 ∀` ≥ 0

が成り立つことと同値.

2. ϕi → ϕ in Dk(M)は, ある compact 部分集合 A ⊂M で {ϕi} ∪ {ϕ} ⊂ DkA(M) かつ

lim
i→∞
‖ϕi − ϕ‖ℓ = 0 ∀` ≥ 0.

が成り立つことと同値.

3. Dk(M) は complete.

KkA(M)についても, {‖ · ‖(0)}を考えれば同様の主張が得られる.

Proof. [(1)] {ϕi} Cauchy 列は boundedである. よって 3.1.9より，ある compact A ⊂M であっ
て, {ϕi} ⊂ DkA(M)となる. これより

{ϕi} Cauchy 列 in Dk(M)

⇐⇒ ∃A ⊂M compact s.t. {ϕi} ⊂ DkA(M) かつ Cauchy 列 in DkA(M)

⇐⇒
3.1.12

∃A ⊂M compact s.t. {ϕi} ⊂ DkA(M) かつ lim
i,j→∞

‖ϕi − ϕj‖ℓ = 0 ∀` ≥ 0.

[(2)] {ϕi} ∪ {ϕ} は bounded より，(1) と同様.

[(3)] (1) と DkA(M) は complete より，任意の Cauchy 列は収束する.

Definition 3.1.14. 連続線型写像 T : Dk(M)→ C のことを k-dimensional current on M

という. 特に distribution は 0-dimensional current のことをさす.

D′
k(M) := { k-current on M } = Homtop C-vect sp

(
Dk(M),C

)
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K′
k(M) := Homtop C-vect sp

(
Kk(M),C

)
.

Proposition 3.1.15 (cf. 1.8.11, 1.8.13). Y を locally convex 位相 C-ベクトル空間, T :

Dk(M)→ Y を C線型写像とする. 次は同値である.

(a) T は 連続
(b) T は bounded, つまり bounded set を bounded set にうつす.

(c) ϕi → 0 in Dk(M) ならば, T (ϕi)→ 0 in Y .

(d) 任意の compact A ⊂M について, T |Dk
A(M) : DkA(M)→ Y は連続.

(e) (Y = C の場合のみ) 任意の compact A ⊂M について, ある ` ≥ 0, C > 0があって,

|T (ϕ)| ≤ C · ‖ϕ‖ℓ for ∀ϕ ∈ DkA(M).

KkA(M)についても, ` = 0のみを考えれば同様の主張が得られる.

Proof. [(a)⇔ (b)⇔ (c)⇔ (d)] (a), (b), (c) の主張において,

Dk(M) 7→ DkA(M) T 7→ T |Dk
A(M)

に取り替えた主張を (a)A, (b)A(c)A とする. 3.1.8よりDkA(M) は metrizable より 1.4.2より,

(a)A ⇐⇒ (b)A ⇐⇒ (c)A

となる. また 3.1.9 (e)から

(d)が成立 ⇐⇒ ∀A ⊂M compact, (a)Aが成立

となる. よって (a)と (d)が同値になる. 同様にしてこれらは (b)や (c)と同値となる.

[(e)⇒ (d)] Y = C とする. compact A ⊂M をとる. 仮定より ` ≥ 0, C > 0があって,

|T (ϕ)| ≤ C · ‖ϕ‖ℓ for ∀ϕ ∈ DkA(M).

∀ε > 0 に対し，
V :=

{
ϕ ∈ DkA(M)

∣∣∣ ‖ϕ‖ℓ < ε

C

}
とおくと， これは 0 を含む open in DkA(M)であり,

ϕ ∈ V ⇒
∣∣T |Dk

A(M)(ϕ)
∣∣ < ε

である. よって T |Dk
A(M) は連続である.
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[(d)⇒ (e)] A ⊂M compactとすると, 仮定より T |Dk
A(M) は連続. よって 3.1.12から, ` ≥ 0, ε > 0

があって,

T
(
{ϕ ∈ DkA(M) | ‖ϕ‖ℓ < ε}

)
⊂ {z ∈ C | |z| < 1}.

よって任意の ϕ ∈ DkA(M)，ϕ 6= 0 に対し，∣∣∣∣T ( ε

2‖ϕ‖ℓ
ϕ

)∣∣∣∣ < 1.

であるので整理して, |T (ϕ)| < 2
ε ‖ϕ‖

ℓとなる. よって C = 2
ε とおけば良い.
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