Abundance theorem for minimal compact Kähler manifolds with vanishing second Chern class

joint work with Shin-ichi Matsumura (Tohoku University)

Masataka Iwai

Osaka University

31th, August, 2022. The 69th Geometry Symposium

- Introduction
- Ø Main results
- 8 Proof

Notations

- X: compact Kähler manifold over \mathbb{C} of $n := \dim_{\mathbb{C}} X \ge 2$.
- Ω^1_X : holomorphic cotangent bundle of X.
- $K_X := \det \Omega^1_X$: canonical line bundle.

Abundance Conjecture

Let X be a projective manifold (or compact Kähler manifold). If K_X is nef, then K_X is semiample.

- L : line bundle on X
 - L is nef $\Leftrightarrow L.C := \int_C \deg_C(L|_C) \ge 0$ for any (complex) curve $C \subset X$. (if X is projective).

 $\Leftrightarrow \text{ for any } \epsilon > 0 \text{, there exists a smooth metric } h_\epsilon \text{ s.t. } \sqrt{-1} \Theta_h \geq -\epsilon \omega.$

2 L is semiample \Leftrightarrow there exists $m \in \mathbb{N}_{>0}$ and a basis $s_0, \ldots, s_N \in H^0(X, L^{\otimes m})$ s.t. the following morphisim is well-defined:

$$\begin{array}{rccc} \Phi_{|L^{\otimes m}|} : & X & \to & \mathbb{CP}^N \\ & x & \longmapsto & (s_0(x) : s_1(x) : \cdots : s_N(x)) \end{array}$$

伺 ト イヨト イヨト

Conjecture (?)

Up to birational equivalence, any projective manifold can be decomposed into the followings varieties:

- **1** Fano variety (variety with positive Ricci curvature).
- 2 Calabi-Yau variety (variety with zero Ricci curvature).
- Canonically polarized variety (variety with negative Ricci curvature).

	\mathbb{CP}^1	elliptic curve	curve with genus ≥ 2
genus	g = 0	g = 1	$g \ge 2$
Ricci curvature	+	0	—
curvature of K_X	-	0	+
	Fano	Calabi-Yau	Canonically polarized

$\dim_{\mathbb{C}} X = 2 \text{ case}$

If $\dim_{\mathbb{C}} X = 2$, by Castelnuovo contraction theorem, there exists a sequence of birational morphisms ("Blow-down"):

$$X := X_0 \to X_1 \to X_2 \to \dots \to X_k =: Y$$

satisfying one of the followings:

Y is CP² or CP¹-bundle. [Fano fibration]
K_Y is nef.

In dim_C X = 2, Abundance conjecture holds. So in the 2nd case, K_Y is semiample and there exists a fibration $\Phi_{|K_Y^{\otimes m}|}: Y \to Z$ s.t.

- $(\dim Y > \dim Z)$ a general fiber of $\Phi_{|K_Y^{\otimes m}|}$ is Calabi-Yau. In particular, Y is torus, bielliptic, K3, Enriques, or elliptic surface. [Calabi-Yau fibration]
- ② $(\dim Y = \dim Z) \Phi_{|K_Y^{\otimes m}|}$ is birational and Z is canonically polarized.
- \therefore The conjecture holds if $\dim_{\mathbb{C}} X = 2$.

Conjecture (Existence of Minimal model)

For any projective manifold X, there exists a projective variety Y birational to X such that

- **2** K_Y is nef.

Conjecture (Abundance Conjecture)

If K_Y is nef, then K_Y is semiample.

If two conjecture holds, then for any projective manifold X, there exists a projective variety Y birational to X such that

- 1 Y has Fano fibration,
- $\ensuremath{ 2 \ } Y$ has Calabi-Yau fibration, or
- \bigcirc Y is canoincally polarized.

Theorem (I.-Matsumura 22)

Let X be a compact Kähler manifold of $n := \dim_{\mathbb{C}} X \ge 2$. If $c_2(X) = c_2(\Omega_X^1) = 0$ and K_X is nef, then K_X is semiample.

In particular, if $c_2(X) = 0$, then the abundance conjecture holds.

Corollary (Höring 13 (cf. I.-Matsumura 22))

Under the assumptions above, there exists a finite covering $X' \to X$ such that one of the followings holds:

- \bigcirc X' is a torus.
- ② there exists a (holomorphic) submersion X' → Y such that any fiber is torus and Y is a curve with genus ≥ 2.

In particular, if $c_2(X) = 0$, then X can be decomposed into a torus and a curve with genus ≥ 2 .

Definition

Let L be a nef line bundle.

 $\bullet\,$ The litaka dimension $\kappa(L)$ is defined by

$$\kappa(L) := \limsup_{m \to \infty} \frac{\log \dim_{\mathbb{C}} H^0(X, L^{\otimes m})}{\log m} \in \{-\infty, 0, \dots, n\}.$$

 $\bullet\,$ The numerical litaka dimension $\nu(L)$ is defined by

 $\nu(L) := \max\{k \,|\, c_1(L)^k \neq 0 \in H^{k,k}(X,\mathbb{R})\} \in \{0,\ldots,n\}.$

• L is abundant iff $\kappa(L) = \nu(L)$.

In general $\kappa(L) \leq \nu(L)$ holds.

伺 と く き と く き と

3

Theorem (Kawamata 85, Nakayama 92)

If K_X is nef and abundant, then K_X is semiample.

Abundance conjecture holds in the following case:

 $(K_X) = n.$

For any nef line bundle L, if $\nu(L) = n$ then L is abundant.

2 $\nu(K_X) = 0.$

By the Beauville-Bogomolov decomposition theorem.

 $\operatorname{dim}_{\mathbb{C}} X \leq 2.$

By an elementary (but not easy) argument.

- $\dim_{\mathbb{C}} X = 3.$
 - X is projective and $\nu(K_X) = 1$. [Miyaoka 87][Miyaoka 88] (4 papers).
 - X is projective and $\nu(K_X) = 2$. [Kawamata 92].
 - X is Kähler. [Campana-Höring-Peternell 16].

伺 ト イ ヨ ト イ ヨ ト

Sketch of the proof

- 1. If $c_2(X) = 0$ and K_X is nef, then $\nu(K_X) \leq 1$ and Ω^1_X is nef.
- 2. If Ω^1_X is nef and $\nu(K_X) \leq 1$, then K_X is semiample.

A vector bundle E is nef iff $\mathcal{O}_{\mathbb{P}(E)}(1)$ is nef on $\mathbb{P}(E)$.

()

Theorem (Miyaoka 87, Campana-Peternell 11, Campana-Păun 19, Enoki 88, Cao 13)

If K_X is nef, then $\int_X c_1(Q) \wedge \omega^{n-1} \ge 0$ holds for any Kähler form ω and any torsion-free sheaf $\Omega^1_X \twoheadrightarrow Q$.

Definition

A vector bundle E is generically nef if $\int_X c_1(Q) \wedge \omega^{n-1} \ge 0$ holds for any Kähler form ω and any torsion-free sheaf $E \twoheadrightarrow Q$.

In general, generically nef does not imply nef.

$$\begin{split} E \ \mathsf{nef} &+ \nu(\det(E)) \leq 1 \Rightarrow c_2(E) = 0 \\ E \ \mathsf{generically} \ \mathsf{nef} &+ \nu(\det(E)) \leq 1 \Rightarrow c_2(E) = 0 \end{split}$$

.

Theorem (Miyaoka 87, Ou17, Cao13, I.-Matsumura 22)

Let *E* be a generically nef vector bundle. If det *E* is nef and $c_2(E) = 0$, then one of the followings holds:

- If $\nu(c_1(E)) \ge 2$, there exists a nef line bundle $L \subset E$ such that $L \cong \det E$ and $c_2(E/L) = 0$.
- 2 If $\nu(c_1(E)) = 1$, there exists a filtration of torsion-free sheaves

$$0 = E_0 \subset E_1 \subset \cdots \subset E_l = E$$

such that the followings hold:

- For any small $\epsilon > 0$, this filtration is Harder-Narasimhan filtration with respect to $(c_1(E) + \epsilon \omega)^{n-1}$.
- For any 1 ≤ i ≤ l, the exists a nonnegative real number λ_i such that c₁(E_i/E_{i-1}) = λ_ic₁(E) and c₂(E_i/E_{i-1}) = 0.

3 If $\nu(c_1(E)) = 0$, *E* is nef.

.

Remark (Nakayama04, Wu22, Liu-Ou-Yang 20)

Each $G_i := (E_i/E_{i-1})^{**}$ is a rank r_i projectively flat vector bundle, that is, there exists a representation

$$\pi_1(X) \to \mathbb{P}GL(r_i, \mathbb{C})$$

such that $\mathbb{P}(G_i)$ is constructed by this represention.

By the above classification, we obtain the following theorem.

Theorem (I.-Matsumura 22)

For any generically nef vector bundle E, if det E is nef and $c_2(E) = 0$, then E is nef.

Step1. If $c_2(X) = 0$ and K_X is nef, then Ω^1_X is nef and $\nu(K_X) \leq 1$.

Assumptions $(c_2(X) = 0 \text{ and } K_X \text{ is nef})$ $\Rightarrow \Omega^1_X$ generically nef $\Rightarrow \Omega^1_X$ is nef.

To obtain a contradiction, suppose $\nu(K_X) \ge 2$. \Rightarrow there exists a nef line bundle $L \subset \Omega^1_X$ such that $\nu(L) \ge 2$. \Rightarrow a contradiction by the Bogomolov-Sommese vanishing.

 \Rightarrow a contradiction by the Bogomolov-Sommese vanishin

Remark (Bogomolov-Sommese vanishing theorem)

for any $1 \leq p \leq n$ and line bundle $L \subset \Omega_X^p$, $\kappa(L) \leq p$ holds. By [Mourougane 95] we can replace $\kappa(L)$ by $\nu(L)$.

伺 と く ヨ と く ヨ と

Definition

X is special in the sense of Campana iff $\kappa(L) < p$ holds for any $1 \leq p \leq n$ and any line bundle $L \subset \Omega^p_X.$

Why X is "special"?

Definition

X is general type $\Leftrightarrow \kappa(K_X) = \nu(K_X) = \dim_{\mathbb{C}} X.$

Any variety X can be decomposed into "special variety" and "(log) general type".

Theorem (Cam04)

If X is not special, then there exists a non trivial dominant rational map $f: X \dashrightarrow Y$ such that the followings hold:

- There exists a Zariski open set $Y_0 \subset Y$ such that $f: f^{-1}(Y_0) \to Y_0$ is proper.
- There exists a bimeromorphic morphism π : X' → X and surjective holomorphic morphism f' : X' → Y with f' = f ∘ π.

- Any general fiber F of f is special.
- The effective \mathbb{Q} -divisor $\Delta_{f'}$ is canonically defined by f' on Yand $\kappa(K_Y + \Delta_{f'}) = \dim Y$. In particular, $(Y, \Delta_{f'})$ is log general type.

•
$$\kappa(K_X) \ge \kappa(K_F) + \dim Y.$$

Theorem (Pereira-Rousseau-Touzet 21)

If there exists a line bundle $L \subset \Omega^1_X$ with $\nu(L) = 1$, then X is not special.

Even if there exists a line bundle $L \subset \Omega^1_X$ with $\nu(L) = 1$, $\kappa(L)$ is not necessarily 1. (This theorem is based on the theory of codimension 1 foliations.)

Theorem (I.-Matsumura 22)

If there exists a projectively flat vector bundle $E \subset \Omega^1_X$ with $\nu(c_1(E)) = 1$, then X is not special.

By the above theorem, we can easily show that "If Ω^1_X is nef and $\nu(K_X) \leq 1$, then K_X is semiample".

同 ト イ ヨ ト イ ヨ ト

Step2. If Ω_X^1 is nef and $\nu(K_X) \leq 1$, then K_X is semiample.

We may assume that $\nu(K_X) = 1$. Use the induction argument.

$$\begin{split} \nu(K_X) &= 1, \ \Omega_X^1 \ \text{nef. (In particular, } c_2(\Omega_X^1) = 0.) \\ \Rightarrow \text{ there exists a filtration } 0 &= E_0 \subset E_1 \subset \cdots \subset E_l = \Omega_X^1 \text{ s.t.} \\ (E_i/E_{i-1})^{**} \ \text{is projectively flat, } c_1(E_i/E_{i-1}) &= \lambda_i c_1(K_X). \\ \Rightarrow E_1 \subset \Omega_X^1, \ E_1 \ \text{is projectively flat, and } \nu(c_1(E_1)) &= 1. \\ \Rightarrow X \ \text{is not special.} \end{split}$$

 \Rightarrow There exists a nontrivial rational map $f:X\dashrightarrow Y$ s.t.

$$\kappa(K_X) \ge \kappa(K_F) + \dim Y$$

for any general fiber F. $\Rightarrow \kappa(K_F) = \nu(K_F) \ge 0$ since Ω_F^1 is nef and $\nu(K_F) \le \nu(K_X) \le 1$. $\Rightarrow 1 = \nu(K_X) \ge \kappa(K_X) \ge \kappa(K_F) + \dim Y \ge \dim Y \ge 1$. $\Rightarrow K_X$ is abundant $\Rightarrow K_X$ is semiample. Thank you for your attention!

æ

∃ >

∃ >

Blank pages

@▶ ∢≣▶

æ

≣≯