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Notations

X : n-dimensional smooth projective variety over C.
TX := (Ω1

X)∨ : holomorphic tangent bundle of X.

−KX := detTX anti-canonical line bundle (divisor).

KX := detΩ1
X : canonical line bundle (divisor).

Theme of this talk

If TX is ”positive”, then the structure of X is restricted.

”positive” means ample, nef, big, and pseudo-effective.

Topics

1 Structure of X if TX is ”positive”.

2 Structure of X if a subsheaf F ⊂ TX is ”positive”.

3 Structure of a log smooth pair (X,D) if a logarithmic tangent
bundle TX(− logD) is ”positive”.
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Positivity of vector bundles

E : vector bundle. π : P(E) → X : projective bundle of X.

E is ample (resp. nef)
def⇔ OP(E)(1) is ample (resp. nef).

E is big (big in the sense of Viehweg)
def⇔ OP(E)(1) is big and π

(
B+(OP(E)(1))

)
̸= X.

E is pseudo-effective (in short. psef)
def⇔ OP(E)(1) is psef and π

(
B−(OP(E)(1))

)
̸= X.

Caution!

This definitions of big and psef are different from the definitions in
Lazarsfeld’s textbook.

Example

A ample line bundle. E := A⊕A∨ is big in the sense of Lazarsfeld.
But E is Not big in the sense of Viehweg. (Not psef).

Remark. L1, . . . , Lr : line bundles. E := ⊕r
i=1Li is ample

(resp. nef, big, psef) iff any Li is ample (resp. nef, big, psef).
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1st topic -Structure of variety if TX is ”positive”-

Theorem

1 [Mori 78] If TX is ample, then X ∼= CPn.

2 [Fulger-Murayama 21] If TX is big, then X ∼= CPn.

Theorem (Campana-Peternell 91, Demailly -Peternell-Schneider 94)

If TX is nef, then ∃π : X ′ → X finite étale morphism and
∃α : X ′ → A smooth surjective morphism s.t.

A is an Abelian variety (in short, AV).

Any fiber of α is Fano.
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Theorem (Hosono-I.-Matsumura 21)

If TX is psef, then ∃π : X ′ → X finite étale morphism and
∃α :→ A smooth surjective morphism s.t.

A is an Abelian variety.

Any fiber of α is rationally connected (in short, RC).

[Mori 78]
TX is ample ⇒ X ∼= CPn

��

// [CP 91, DPS 94] TX is nef
⇒ X = AV + Fano

��
[FM 21]

TX is big ⇒ X ∼= CPn
// [HIM 21] TX is psef
⇒ X = AV + RC

We give an another short proof of [DPS 94] and [HIM 21] in 2nd
topic later.
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Related studies: -Structure of varieties if −KX is nef-

Theorem

[Cao 19][Cao-Höring 19]. If −KX is nef, then
Xuniv

∼= RC × Cr × CY × IHS.

[Campana-Cao-Matsumura 21] If −KX is nef, then we can
take a locally trivial MRC morphism X → Y with c1(Y ) = 0.

[Matsumura-Wang 21] If X is a klt variety and −KX is nef,
then ∃X ′ → X quasi-étale cover, we can take a locally trivial
MRC morphism X ′ → Y ′ s.t. KY ′ ≡ 0 and Y ′ is klt.

By Matsumura-Wang’s work, we know the structure of a klt
variety with a nef anticanonical divisor.

Remark (Singular Beauville-Bogomolov decomposition by Druel 19,
Greb-Guenancia-Kebekus 19, and Höring-Peternell 19.)

If X is a klt variety and KX ≡ 0, then ∃X ′ → X quasi-étale cover
s.t. X ′ ∼= AV × (singular)CY × (singular)IHS.
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Related studies: -TX or −KX is strictly nef-

A line bundle L is strictly nef
def⇔ L.C > 0 for any curve C ⊂ X.

A vector bundle E is strictly nef
def⇔ OP(E)(1) is strictly nef.

Theorem

[Li-Ou-Yang 19] If TX is strictly nef, then X ∼= CPn.

[Li-Ou-Yang 19] If −KX is strictly nef, then X is RC.

[Liu-Ou-Yang-Wang-Zhong 21] If X is klt and −KX is strictly
nef, then X is RC. (This also holds for klt pairs.)

Conjecture (Campana-Peternell 91)

If −KX is strictly nef, then X is Fano.

Conjecture holds in this following case:
[Maeda 93] X is smooth and dimX = 2.

[Serrano 95] X is smooth and dimX = 3.

[Uehara 00] X is canonical and dimX = 3.

[Liu-Ou-Yang-Wang-Zhong 21] X is klt and dimX = 3.

Masataka Iwai structure of manifolds whose tangent bundles are positive



2nd topic -Structure of variety if ∃F ⊂ TX is ”positive”-

Theorem (Andreatta-Wísniewski 01)

If F is a rank r ample locally free subsheaf of TX ,
then X ∼= CPn and F ∼= OCPn(1)⊕r or F ∼= TCPn .

Peternell proposed the following question.

Question (Peternell 01)

Let F be a locally free subsheaf of TX .
What can be said on the structure of X if F is nef or psef?

We give a partial answer to Peternell’s question in the case F is
nef, big, or psef.
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Theorem (I. 21)

Let F be a subbundle of TX . Assume that F is a foliation.
If F is psef, then ∃f : X → Y smooth surjective morphism s.t.

Any fiber of f is RC.

∃G ⊂ TY numerically flat subbundle s.t G is a foliation.

There exists an exact sequence of vector bundles:

0 → TX/Y → F → f∗G → 0.

Corollary (I. 21)

Under the above assumptions, the followings hold.

1 If F is ample, then X ∼= CPn and F ∼= TCPn .

2 If F is nef and big, then X ∼= CPn and F ∼= TCPn .

3 If F is nef, then any fiber of f is Fano.

4 If F is big, then any fiber of f is CPr and F ∼= TX/Y .
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[AW 01]
F is ample ⇒ X ∼= CPn.

��

//
[I. 21] F is nef ⇒

X = variety with a flat foliation
+ Fano

��

[I. 21] F is big ⇒
X = variety with a flat foliation

+ CPr

//
[I. 21] F is psef ⇒

X = variety with a flat foliation
+ RC

Remark

We know the structure of ”variety with a flat foliation” if rankG is
large.

• rankG = dimY ⇒ Y is AV up to finite étale cover. (By Yau’s
theorem.)
• rankG = dimY − 1 ⇒ This foliation is classified by [Touzet 08],
[Pereira-Touzet 13], and [Druel 17]. (3 types).
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Sketch proof -from the viewpoint of slopes-

A : ample line bundle. E : torsion free coherent sheaf.

µA(E) :=
c1(E)An−1

rankE

µmin
A (E) := inf{µA(Q) : E ↠ Q}

The following theorem is obtained by combining [Miyaoka 87] with
[Höring 07].

Theorem (Miyaoka 87+ Höring 07)

Let E ⊂ TX be a subbundle and foliation. If µmin
A (E) > 0, then

∃f : X → Y smooth surjective morphism s.t.

Any fiber of f is RC.

E = TX/Y .
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On the other hand, we obtain the following decomposition
theorem.

Theorem (I. 21)

Let F be a psef vector bundle on X.
Then there exist vector bundles E ,Q s.t.

E is psef and µmin
A (E) > 0 unless E = 0.

Q is numerically flat.

There exists an exact sequence of vector bundles:

0 // E // F // Q // 0.
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Proof of main theorem and corollary

Assume that F ⊂ TX is a subbundle, foliation and psef.
⇒

0 // E // F // Q // 0.

• E ⊂ TX is a subbundle and foliation with µmin
A (E) > 0.

• Q is numerically flat.
⇒ ∃ f : X → Y smooth surjective morphism
s.t. any fiber of f is RC and E = TX/Y .
⇒ ∃ G ⊂ TY s.t. Q = f∗G, G is a numerically flat subbundle and
foliation.

F : a fiber of f .
1 F is ample ⇒ f∗G = 0, both TX/Y and TF are ample

⇒ dimY = 0, X ∼= CPn, F ∼= TCPn .
2 F is nef and big...(same argument!)
3 F is nef ⇒ TF is nef, F is RC. ⇒ F is Fano by [DPS 94.

Proposition 3.10]
4 F is big ⇒ f∗G = 0, TF is big ⇒ F ∼= CPr, F ∼= TX/Y .
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Another short proof of [DPS 94] and [HIM 21]

• Proof of [HIM 21].
F = TX is psef. ⇒ G = TY is numerically flat.
⇒ c1(Ω

1
Y ) = 0 and c2(Ω

1
Y ) = 0.

⇒ ∃Y ′ → Y : finite étale s.t. Y ′ is AV.
⇒ ∃X ′ → X: finite étale s.t. f ′ : X ′ → Y ′ is smooth and any
fiber of f ′ is RC.

X ′ f ′
//

��

Y ′

��
X

f // Y

• Proof of [DPS 94].
Any fiber F ′ of f ′ is RC, TF ′ is nef.　
⇒ F ′ is Fano by [DPS 94. Proposition 3.10].
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Related studies

Theorem

[Liu-Ou-Yang 20] If F ⊂ TX is a rank r strictly nef locally free
sheaf, then

∃f : X → Y is a CPd-bundle s.t. Y is Brody hyperbolic.
F ∼= TX/Y or F is projectively flat and F|F ∼= OCPd(1)⊕r.

[Ou 21] If F ⊂ TX is a subbundle and foliation s.t.
−KF := det(F) is nef, then

∃f : X → Y locally trivial with RC fibers.
∃G ⊂ TY foliation with −KG ≡ 0.

[Liu-Ou-Yang-Wang-Zhong 21] If F ⊂ TX is subbundle and
foliation and −KF is strictly nef, then

∃f : X → Y locally trivial with RC fibers s.t. Y is Brody
hyperbolic and KY is ample.
F is induced by f . (In particular, F is algebraically integrable.)
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3rd case -Structure of variety s.t. TX(− logD) is
”positive”-

Conjecture (Campana-Cao-Matsumura 21)

Let (X,D) be a klt pair. If −(KX +D) is nef, then

1 ∃ρ : (X,D) → (R,DR) s.t. ρ is locally trivial.

2 (R,DR) is a klt pair, R is smooth, and KR +DR ≡ 0.

3 Any general fiber (Xr, Dr) is ”slope rationally connected”.

Lc pair (X,D) is slope rationally connected
def⇔ ∀A ample, ∃m(A)

s.t. ∀m > m(A), H0(X,⊗mΩ1(X,D)⊗A) = 0.

Observation

If T (X,D) is ”positive”, then (X,D) maybe consists of

a slope rationally connected manifold (Y,DY ) and

a log pair (R,DR) with KR +DR ≡ 0.

The above observation is correct under certain conditions.
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Introduction

Theorem (Greb-Kebekus-Peternell 20)

Let X be a projective klt variety. Assume that −KX is nef. Then
the following are equivalent.

1 E−KX
⟨KX
n+1⟩ is nef. (E−KX

is the canonical extension sheaf.
We defined this later.)

2 X is a quotient of CPn or an Abelian variety by the action of
a finite group of automorphisms without fixed points in
codimension one.

Theorem (Greb-Kebekus-Peternell 21)

Let X be a projective klt variety of dimension n ≥ 2. If TX⟨KX
n ⟩ is

nef, then ∃X̃ → X quasi-étale cover s.t. X̃ is AV.
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Remark 1 -canonical extension sheaf-

Definition (Tian 92)

L: line bundle. From c1(L) ∈ H1(X,Ω1
X) = Ext1(OX ,Ω1

X), there
exists a vector bundle WL and

0 → Ω1
X → WL → OX → 0.

Set EL := (WL)
∨. Then

0 → OX → EL → TX → 0.

If L = −KX , E−KX
is called the canonical extension sheaf.

Theorem (Tian 92)

If −KX is ample and X has a Kähler-Einstein metric, then the
canonical extension sheaf E−KX

is −KX -semistable. In particular,(
c2(TX)− n

2(n+ 1)
c1(TX)2

)
(−KX)n−2 ≥ 0.
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Remark 2 -Nakayama’s theorem-

Theorem (Nakayama 04)

Let E be a rank r vector bundle. The following are equivalent.

1 E⟨det E∨

r ⟩ is nef. ( ⇔ SymrE ⊗ det E∨ is nef. )

2 E is H-semistable and(
c2(E)−

r − 1

2r
c1(E)2

)
Hn−2 = 0

for some ample divisor H.

• E−KX
⟨KX
n+1⟩ is nef ⇔ E−KX

is H-semistable and(
c2(TX)− n

2(n+ 1)
c1(TX)2

)
Hn−2 = 0.

• TX⟨KX
n ⟩ is nef ⇔ TX is H-semistable and(

c2(TX)− n− 1

2n
c1(TX)2

)
Hn−2 = 0.
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Main results

Theorem (I. 21)

Let X be a smooth projective variety of dimension n ≥ 2 and D be
a simple normal crossing divisor. Assume that −(KX +D) is nef.
If EL⟨KX+D

n+1 ⟩ is nef for some line bundle L, then one of the
following statements holds.

1 (X,D) is a toric fiber bundle over a finite étale quotient of
AV.

2 (X,D) ∼= (CPn, 0).

In this case, TX(− logD) is nef.
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Theorem (I. 21)

Let X be a smooth projective variety of dimension n ≥ 2 and D be
a simple normal crossing divisor. Assume that −(KX +D) is nef.
If TX(− logD)⟨KX+D

n ⟩ is nef, then one of the following
statements holds.

1 (X,D) is a toric fiber bundle over a finite étale quotient of
AV.

2 X is RC, c1(KX +D) ̸= 0, ∃B Cartier divisor with
TX(− logD) ∼= OX(B)⊕n.

Moreover, if (2) holds and (X,D) is a Mori fiber space, then
(X,D) ∼= (CPn,HCPn), where HCPn is a hyperplane of CPn.

In this case, TX(− logD) is nef.
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Corollary - Characterizations of toric fiber bundles-

Corollary (Characterizations of toric fiber bundles)

If c1(TX(− logD)) = 0 and c2
(
TX(− logD)

)
Hn−2 = 0, then

(X,D) is a toric fiber bundle over a finite étale quotient of AV.

Proof.
KX +D ≡ 0 ⇒ EH is H-semistable for any ample H by [Li 20].
By assumption,(
c2(TX(− logD))− n

2(n+1)c1(TX(− logD))2
)
Hn−2 = 0.

⇒ EH⟨KX+D
n+1 ⟩ is nef.

⇒ (X,D) is a toric fiber bundle.
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Proofs - Main result 1-

EL⟨KX+D
n+1 ⟩ is nef. ⇒ TX(− logD) is nef. ⇒ TX is psef.

[HIM 21]
=⇒ ∃ Y finite étale quotient of AV and

∃ f : X → Y smooth morphism s.t. any fiber of f is RC.
TX(− logD) nef

=⇒ (X,D) is a logarithmic deformation over Y .

• Case 1: c1(KF +DF ) = 0 for any fiber F .
⇒ TF (− logDF ) ∼= O⊕n

F . (∵ TF (− logDF ) is numerically flat)
[Winkelmann 04]

=⇒ (F,DF ) is toric for any F .
=⇒ (X,D) is a toric fiber bundle over Y .

• Case 2: c1(KF +DF ) ̸= 0 for some fiber F .
=⇒ dimY = 0. (∵ TX(− logD)⟨KX+D

n+1 ⟩ is nef.)
⇒ ∃ a line bundle M with −(KX +D) ∼ (n+ 1)M .
[Fujino-Miyamoto 20]

=⇒ (X,D) ∼= (CPn, 0).
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Related studies

In December 2021, Druel established the structure theorem of a
log smooth pair s.t. TX(− logD)⟨KX+D

n ⟩ is nef.

Theorem (Druel 21)

Let (X,D) be a log smooth pair of dimension n ≥ 2. If
TX(− logD)⟨KX+D

n ⟩ is nef, then ∃γ : Y → X finite cover and
∃β : Y → Z birational projective morphism s.t.

∃B ⊂ Z s.t. γ−1(D) = β−1(B) ∪ Excβ.

β is a blow up of finitely many points in Z \B.

Moreover, one of the followings holds.

1 TZ(− logB) is numeically flat.

2 Z ∼= CPn and B ∼= CPn−1.
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Related studies -Campana-Cao-Matsumura’s conjecture-

Conjecture (Campana-Cao-Matsumura 21)

Let (X,D) be a klt pair. If −(KX +D) is nef, then

1 ∃ρ : (X,D) → (R,DR) s.t. ρ is locally trivial.

2 (R,DR) is a klt pair, R is smooth, and KR +DR ≡ 0.

3 Any general fiber (Xr, Dr) is ”slope rationally connected”.

This conjecture is open even if T (X,D) is nef. (I think this
conjecture maybe holds if T (X,D) is psef.)
If (X,D) is an lc pair, this conjecture is not true even if T (X,D)
is nef.

Example (I. 21)

Let H1,H2 be a distinct two lines in CP2. Set D := H1 +H2.
T (CP2, D) = TCP2(− logD) is nef．However we can not take ρ as
in the above conjecture.

Hence the first observation is false in general...
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Thank you for your attention!
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