On the structure of a log smooth pair in the equality case of the Bogomolov-Gieseker inequality

Masataka Iwai

Research Alliance Center for Mathematical Sciences, Tohoku University (RACMaS)

June 25th, 2021. Geometry seminar in Kyushu University.

- Introduction
- 2 Main results
- O Proofs

æ

伺 ト イヨト イヨト

Notations

- X: n-dimensional smooth projective variety over \mathbb{C} .
- T_X : holomorphic tangent bundle of X.
- $-K_X := \det T_X$: anti-canonical line bundle (divisor).
- $K_X := \det \Omega_X$: canonical line bundle (divisor).
- D: simple normal crossing divisor on X.
- $\Omega_X(\log D)$: logarithmic cotangent bundle.
- $T_X(-\log D) := \Omega_X(\log D)^{\vee}$: logarithmic tangent bundle.

伺 ト イ ヨ ト イ ヨ ト

If the equality holds in "some good inequality", then the structure of X is restricted.

Theorem (Chen-Ogiue 75)

Let (X, ω) be a compact Kähler-Einstein manifold, and $\alpha := \{\omega\} \in H^{1,1}(X, \mathbb{R})$. Then,

$$\left(c_2(T_X) - \frac{n}{2(n+1)}c_1(T_X)^2\right)\alpha^{n-2} \ge 0.$$

Equality holds iff $X_{univ} \cong \mathbb{CP}^n, \mathbb{C}^n$, or \mathbb{B}^n .

If $c_1(T_X) = 0$ or K_X is ample, then X has a Kähler-Einstein metric. ([Yau78][Aubin-Yau78])

通 と イ ヨ と イ ヨ と

Theorem (Miyaoka 77, Yau 78)

1 If $-K_X$ is ample and X has a Kähler-Einstein metric, then

$$\left(c_2(T_X) - \frac{n}{2(n+1)}c_1(T_X)^2\right)(-K_X)^{n-2} \ge 0.$$

Equality holds iff $X \cong \mathbb{CP}^n$.

- 2 If $c_1(T_X) = 0$, then $c_2(T_X)H^{n-2} \ge 0$ for any ample H. Equality holds iff X is a torus up to a finite étale cover.
- **3** If K_X is ample, then

$$\left(c_2(T_X) - \frac{n}{2(n+1)}c_1(T_X)^2\right)(K_X)^{n-2} \ge 0.$$

Equality holds iff X is a ball quotient.

Miyaoka-Yau inequality is a kind of Bogomolov-Gieseker inequality for "some vector bundle".

Theorem (Bogomolov, Gieseker)

Let E be a rank r vector bundle and H be an ample line bundle. If E is H-semistable, then

$$\left(c_2(E) - \frac{r-1}{2r}c_1(E)^2\right)H^{n-2} \ge 0.$$

Definition (Tian 92)

Let L be a line bundle on X. From

$$H^1(X, \mathcal{O}_X^*) \xrightarrow{c_1} H^1(X, \Omega_X^1) = \mathsf{Ext}^1(\mathcal{O}_X, \Omega_X^1),$$

there exist a vector bundle W_L induced by $c_1(L)$ and

$$0 \to \Omega^1_X \to W_L \to \mathcal{O}_X \to 0.$$

Let \mathcal{E}_L be a dual bundle of W_L . Then

$$0 \to \mathcal{O}_X \to \mathcal{E}_L \to T_X \to 0.$$

 \mathcal{E}_L is extension sheaf of T_X by \mathcal{O}_X with the extension class $c_1(L)$. \mathcal{E}_{-K_X} is called the canonical extension sheaf of T_X by \mathcal{O}_X .

Why does Miyaoka-Yau inequality hold?

Propoerty

$$\mathsf{rk}(\mathcal{E}_L) = n + 1, c_1(\mathcal{E}_L) = c_1(T_X), c_2(\mathcal{E}_L) = c_2(T_X)$$

Theorem (Tian 92)

If $-K_X$ is ample and X has a Kähler-Einstein metric, then the canonical extension sheaf \mathcal{E}_{-K_X} is $-K_X$ -semistable.

Corollary

If $-K_X$ is ample and X has a Kähler-Einstein metric, then

$$\left(c_2(T_X) - \frac{n}{2(n+1)}c_1(T_X)^2\right)(-K_X)^{n-2} \ge 0.$$

個 と く ヨ と く ヨ と

Theorem (Greb-Kebekus-Peternell 20)

Let X be a projective klt variety. Assume that $-K_X$ is nef. Then the following are equivalent.

• There exists an ample Cartier divisor H such that the canonical extension sheaf \mathcal{E}_{-K_X} is H-semistable and

$$\left(\hat{c}_2(\Omega_X^{[1]}) - \frac{n}{2(n+1)}\hat{c}_1(\Omega_X^{[1]})^2\right)[H]^{n-2} = 0.$$

② X is a quotient of CPⁿ or an Abelian variety by the action of a finite group of automorphisms without fixed points in codimension one.

Theorem (Greb-Kebekus-Peternell 20)

Let X be a projective klt variety of dimension $n \ge 2$ and H be an ample divisor. If $\Omega_X^{[1]}$ is H-semistable and

$$\left(\hat{c}_2(\Omega_X^{[1]}) - \frac{n-1}{2n}\hat{c}_1(\Omega_X^{[1]})^2\right)[H]^{n-2} = 0,$$

then X is a quasi-Abelian variety, that is, there exists a quasi-étale cover $\widetilde{X} \to X$ from an Abelian variety \widetilde{X} to X.

Definition (Li 20)

Let D be a simple normal crossing divisor and L be a line bundle. From

$$H^1(X, \mathcal{O}_X^*) \xrightarrow{c_1} H^1(X, \Omega_X^1)$$

$$\xrightarrow{\Phi} H^1(X, \Omega^1_X(\log D)) = \mathsf{Ext}^1(\mathcal{O}_X, \Omega^1_X(\log D)),$$

there exist a vector bundle W_L induced by $\Phi(c_1(L))$ and

$$0 \to \Omega^1_X(\log D) \to W_L \to \mathcal{O}_X \to 0.$$

Let \mathcal{E}_L be a dual bundle of W_L . Then

$$0 \to \mathcal{O}_X \to \mathcal{E}_L \to T_X(-\log D) \to 0.$$

 \mathcal{E}_L is called the extension sheaf of $T_X(-\log D)$ by \mathcal{O}_X with the extension class $c_1(L)$.

< 白津 ▶

Theorem (Li 20)

If $c_1(T_X(-\log D)) = -(K_X + D) = 0$, then \mathcal{E}_H is *H*-semistable for any ample line bundle *H*.

We do not know when $\mathcal{E}_{-(K_X+D)}$ is H-semistable for a log Fano pair (X, D).

伺 と く ヨ と く ヨ と

Theorem (I. 21)

Let X be a smooth projective variety of dimension $n \ge 2$, D be a simple normal crossing divisor, and H be an ample divisor. Assume that $-(K_X + D)$ is nef. If the extension sheaf \mathcal{E}_L is H-semistable for some line bundle L and

$$\left(c_2\left(T_X(-\log D)\right) - \frac{n}{2(n+1)}c_1\left(T_X(-\log D)\right)^2\right)H^{n-2} = 0,$$

then one of the following statements holds.

 (X, D) is a toric fiber bundle over a finite étale quotient of an Abelian variety.

$$(X,D) \cong (\mathbb{CP}^n,0).$$

.

Theorem (I. 21)

Let X be a smooth projective variety of dimension $n \ge 2$, D be a simple normal crossing divisor, and H be an ample divisor. Assume that $-(K_X + D)$ is nef. If $T_X(-\log D)$ is H-semistable and

$$\left(c_2(T_X(-\log D)) - \frac{n-1}{2n}c_1(T_X(-\log D))^2\right)H^{n-2} = 0,$$

then one of the following statements holds.

 (X, D) is a toric fiber bundle over a finite étale quotient of an Abelian variety.

2 X is rationally connected, $c_1(K_X + D) \neq 0$, and there exists a Cartier divisior B with $T_X(-\log D) \cong \mathcal{O}_X(B)^{\oplus n}$.

Moreover, if (2) holds and (X, D) is a Mori fiber space, then $(X, D) \cong (\mathbb{CP}^n, H_{\mathbb{CP}^n})$, where $H_{\mathbb{CP}^n}$ is a hyperplane of \mathbb{CP}^n .

Remark [I.21]

For any $m \in \mathbb{N}_{>0}$, \exists an example (X_m, D_m) such that

X_m is an m-th Hirzebruch surface.
 (In particular, X_m is rationally connected.)

2
$$c_1(K_{X_m} + D_m) \neq 0.$$

3 a Cartier divisor B_m with $T_{X_m}(-\log D_m) \cong \mathcal{O}_{X_m}(B_m)^{\oplus 2}$.

$$(X_m, D_m) \not\cong (\mathbb{CP}^2, H_{\mathbb{CP}^2}).$$

Corollary (A characterization of a toric fiber bundle)

If $c_1(T_X(-\log D)) = 0$ and $c_2(T_X(-\log D))H^{n-2} = 0$, then (X, D) is a toric fiber bundle over a finite étale quotient of an Abelian variety.

・ 同 ト ・ ヨ ト ・ ヨ

Related researches

• [Tsuji 88] and [Tian-Yau 87]. Assume $K_X + D$ is nef, big, and ample modulo D. If

$$\left(c_2(\Omega_X(\log D)) - \frac{n}{2(n+1)}c_1(\Omega_X(\log D))^2\right)c_1(\Omega_X(\log D))^{n-2} = 0,$$

then the universal cover of $X \setminus D$ is a unit ball in \mathbb{C}^n .

• [Deng20]. If the natural log Higgs bundle $(\Omega^1_X(\log D)\oplus \mathcal{O}_X,\theta)$ is H-polystable and

$$\left(c_2(\Omega_X(-\log D)) - \frac{n}{2(n+1)}c_1(\Omega_X(-\log D))^2\right)H^{n-2} = 0,$$

then the universal cover of $X \setminus D$ is a unit ball in \mathbb{C}^n .

• [Druel-LoBianco 20]. If $T_X(-\log D)$ is numerically flat, then (X,D) is a toric fiber bundle over a finite étale quotient of an Abelian variety.

Proofs - simple case D = 0 - (GKP's proof)

 \mathcal{E}_L is *H*-semistable and $\left(c_2(\mathcal{E}_L) - \frac{n}{2(n+1)}c_1(\mathcal{E}_L)^2\right)H^{n-2} = 0.$ $\stackrel{[Nak 04]}{\Longrightarrow} \mathcal{E}_L \langle \frac{K_X}{n+1} \rangle \text{ is nef. } (\Leftrightarrow \operatorname{Sym}^{n+1} \mathcal{E}_L \otimes K_X \text{ is nef.})$ $\stackrel{\mathcal{E}_L \twoheadrightarrow T_X}{\Longrightarrow} T_X \langle \frac{K_X}{n+1} \rangle$ is nef. $\stackrel{-K_X \text{ nef}}{\Longrightarrow} T_X \text{ is nef.}$ $\overset{[\mathsf{DPS94}]}{\Longrightarrow} \exists \text{ a finite \'etale quotient of an Abelian variety } Y \text{ and }$ \exists a smooth morphism $f: X \to Y$ such that any fiber is Fano. $\implies \dim X = \dim Y$ or $\dim Y = 0$. • Case 1: $\dim X = \dim Y$. X is a finite étale quotient of an Abelian variety. • Case 2: $\dim Y = 0$. \exists a line bundle M with $\mathcal{E}_L \cong M^{\oplus n+1}$ by [LOY20, GKP20]. $\implies -K_X \sim (n+1)M \stackrel{[\mathsf{KO73}]}{\implies} X \cong \mathbb{CP}^n.$

伺 ト イヨト イヨト

Theorem (Nakayama 04)

Let \mathcal{E} be a rank r vector bundle. Then the following are equivalent.

2 \mathcal{E} is *H*-semistable and

$$\left(c_2(\mathcal{E}) - \frac{r-1}{2r}c_1(\mathcal{E})^2\right)H^{n-2} = 0.$$

If (1) or (2) holds, then ${\cal E}$ is called numerically projectively flat.

< ≣ > <

Theorem (Greb-Kebekus-Peternell 20, Liu-Ou-Yang 20)

If $\mathcal E$ is numerically projectively flat, then $\mathcal E$ is projectively flat.

Corollary

If X is simply connected and \mathcal{E} is numerically projectively flat, then there exists a line bundle M such that $\mathcal{E} \cong M^{\oplus r}$.

Proofs - Main result 1-

 \mathcal{E}_L is *H*-semistable and $\left(c_2(\mathcal{E}_L) - \frac{n}{2(n+1)}c_1(\mathcal{E}_L)^2\right)H^{n-2} = 0.$ $\stackrel{[\mathsf{Nak04}]}{\Longrightarrow} \mathcal{E}_L \langle \frac{K_X + D}{n+1} \rangle \text{ is nef.}$ $\stackrel{\mathcal{E}_L \to T_X(-\log D)}{\Longrightarrow} T_X(-\log D) \langle \frac{K_X + D}{n+1} \rangle \text{ is nef.}$ $\stackrel{-(K_X + D) \text{ nef}}{\Longrightarrow} T_X(-\log D) \text{ is nef.} \Longrightarrow T_X \text{ is pseudo-effective.}$ $\stackrel{[\mathsf{HIM19}]}{\Longrightarrow} \exists$ a finite étale quotient of an Abelian variety Y and \exists a smooth morphism $f: X \to Y$ such that any fiber is rationally connected. $\stackrel{T_X(-\log D) \text{ nef }}{\Longrightarrow} (X, D) \text{ is a logarithmic deformation over } Y.$ • Case 1: $c_1(K_F + D_F) = 0$ for any fiber F. $\Rightarrow T_F(-\log D_F) \cong \mathcal{O}_F^{\oplus n} \Rightarrow (F, D_F)$ is toric for any F. \implies (X, D) is a toric fiber bundle over Y. • Case 2: $c_1(K_F + D_F) \neq 0$ for some fiber F. $\Rightarrow \dim Y = 0$. $\Rightarrow \exists$ a line bundle M with $-(K_X + D) \sim (n+1)M \stackrel{[\mathsf{FM20}]}{\Longrightarrow} (X, D) \cong (\mathbb{CP}^n, 0).$

Theorem (An easy consequence of Winkelman 04 or Brown-Mckernan-Svaldi-Zong 18)

If X is rationally connected, $-(K_X + D)$ is nef, and $T_X(-\log D) \cong \mathcal{O}_X^{\oplus n}$, then (X, D) is a toric variety with a boundary divisor D.

Theorem (Fujino-Miyamoto 20)

Let (X, D) be a projective log canonical pair. Assume that $K_X + D$ is not nef and $-(K_X + D) \equiv rM$ for some Cartier divisor M with r > n. Then $X \cong \mathbb{CP}^n$ with $\mathcal{O}_X(M) \cong \mathcal{O}_{\mathbb{CP}^n}(1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

X is rationally connected, $c_1(K_X + D) \neq 0$, \exists a Cartier divisior B with $T_X(-\log D) \cong \mathcal{O}_X(B)^{\oplus n}$, and $\phi : (X, D) \to Z$ is a Mori fiber space.

• Case 1: dim $Z \neq 0$. [FM20] $\implies (F, D_F) \cong (\mathbb{CP}^{n-1}, 0)$ for a general fiber F. $\implies \exists$ a long exact sequence:

$$H^1(F, \Omega^1_X(\log D)|_F) \to H^1(F, \Omega^1_F) \to H^2(F, \mathcal{O}_F)^{\oplus \dim Z}$$

$$\implies H^1(F, \Omega_F^1) = 0. \implies \text{Contradiction.}$$

• Case 2: dim $Z = 0$.

$$\implies (X, D) \text{ is log Fano, } -(K_X + D) \sim nB, \text{ and } D \neq 0.$$

$$\stackrel{[\text{Fjt14}]}{\implies} (X, D) \cong (\mathbb{CP}^n, H_{\mathbb{CP}^n}).$$

Thank you for your attention!

э

Blank pages

æ