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Notations

X : n-dimensional smooth projective variety over C.
TX : holomorphic tangent bundle of X.
−KX := detTX anti-canonical line bundle.

If TX is ’positive’, then the structure of X is restricted.

’positive’ means ample, nef, and so on...
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Positivity of vector bundles

E : vector bundle of X.
π : P(E) → X : projective bundle of X.

E is ample (resp. strictly nef, nef)
⇔ OP(E)(1) is ample (resp. strictly nef, nef) on P(E).

E is big (big in the sense of Viehweg)
⇔ OP(E)(1) is big and π

(
B+(OP(E)(1))

)
̸= X.

E is pseudo-effective (weakly positive in the sense of
Nakayama)
⇔ OP(E)(1) is psef and π

(
B−(OP(E)(1))

)
̸= X.

Ample +3

��

Strictly nef +3 Nef

��
Big +3 Psef
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Remark and Example

The definition of ample (resp. strictly nef, nef, big, psef)
coincides with the usual one if E is a line bundle.

TCPn is ample.

L1, · · · , Lr : line bundles on X. Set E := ⊕r
i=1Li.

E is ample (resp. strictly nef, nef, big, psef)
iff any Li is ample (resp. strictly nef, nef, big, psef).

A : Abelian variety. Then TA is nef.
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Previous researches

If TX is ample (nef, big, and so on...),
then the structure of X is restricted.

Theorem

1 (Mori 78) If TX is ample, then X ∼= CPn.

2 (Li-Ou-Yang 19) If TX is strictly nef, then X ∼= CPn.

3 (Fulger-Murayama 21) If TX is big, then X ∼= CPn.

Ample +3

� �

Strictly nef +3 Nef

��
Big +3 Psef
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Theorem (Campana-Peternell 91, Demailly -Peternell-Schneider 94)

If TX is nef, then
there exist a finite étale morphism π : X̃ → X and
a smooth surjective morphism α : X̃ → A s.t.

A is an Abelian variety.

Any fiber of α is Fano.

Theorem (Hosono-I.-Matsumura 21)

If TX is psef, then
there exist a finite étale morphism π : X̃ → X and
a smooth surjective morphism α : X̃ → A s.t.

A is an Abelian variety.

Any fiber of α is rationally connected.
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Summary

[LOY 19]
TX is strictly nef ⇒ X ∼= CPn

[Mori 78]
TX is ample ⇒ X ∼= CPn

��

// [CP91, DPS94] TX is nef
⇒ X ≈ Abelian variety + Fano

��

[FM 21]
TX is big ⇒ X ∼= CPn

//
[HIM 21] TX is psef

⇒ X ≈ Abelian variety
+ rationally connected variety

If TX is ’positive’ (such as ample, nef, and so on),
then we know the structure of X.
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Peternell’s question and related researches

Peternell proposed the following question.

Question (Peternell 01)

Let F be a locally free subsheaf of TX .
What can be said on the structure of X if F is nef or psef?

Theorem (Andreatta-Wísniewski 01)

If F is a rank r ample locally free subsheaf of TX ,
then X ∼= CPn and F ∼= OCPn(1)⊕r or F ∼= TCPn .
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Theorem (Liu-Ou-Yang 20)

If F is a rank r strictly nef locally free subsheaf of TX ,
then X admits a CPd-bundle structure ϕ : X → Y for some d ≥ r
s.t.

F ∼= TX/Y or F is projectively flat and F|F ∼= OCPd(1)⊕r.

Y is hyperbolic. (any holomorphic map C → Y is constant.)

What can be said on the structure of X
if F ⊂ TX is nef, big, or psef?

Ample +3

� �

Strictly nef +3 Nef

��
Big +3 Psef
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Main results

We give a partial answer to Peternell’s question.

Theorem (I. 20)

Let F be a subbundle of TX . Assume that F is a foliation.
If F is psef, then there exists a smooth morphism f : X → Y s.t.

Any fiber of f is rationally connected.

There exists a numerically flat subbundle G of TY

s.t G is a foliation.

There exists an exact sequence of vector bundles:

0 → TX/Y → F → f∗G → 0.
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Main results

Corollary (I. 20)

Let F be a rank r subbundle of TX . Assume that F is a foliation.

1 If F is ample, then X ∼= CPn and F ∼= TCPn .

2 If F is nef and big, then X ∼= CPn and F ∼= TCPn .

3 If F is nef, then any fiber of f is Fano.

4 If F is big, then any fiber of f is CPr and F ∼= TX/Y .
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Remark on the structure of a variety with a flat foliation

What can be said on the structure of Y
if G ⊂ TY is a numerically flat subbundle and foliation ?

G is numerically flat ⇒ c1(G) = c2(G) = 0.

Case 1. G = TY .
By c1(TY ) = c2(TY ) = 0, ∃ a finite étale π : A → Y s.t. A is
an Abelian variety.

Case 2. rankG = dimY − 1.
This foliation is classified by [Touzet 08], [Pereira-Touzet 13]
and [Druel 17]. (3 types)

Case 3. rankG = dimY − 2.
This foliation is classified by [Druel 18]. (3 types)
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Summary

[LOY 20] F is strictly nef ⇒
X is CPd-bundle over a hyperbolic manifold.

[AW 01]
F is ample ⇒ X ∼= CPn.

��

//
[I. 20] F is nef ⇒

X ≈ variety with a flat foliation
+ Fano

��

[I. 20] F is big ⇒
X ≈ variety with a flat foliation

+ CPr

//
[I. 20] F is psef ⇒

X ≈ variety with a flat foliation
+ rationally connected variety
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