On projective manifolds whose tangent bundles contain positive subbundles

Masataka Iwai

Osaka City University(OCAMI), Kyoto University(RIMS)

February 6th, 2021. Grauert theory and recent complex geometry

- Introduction
- Ø Main result
- 8 Proof
- **④** Remark: Fujita's decomposition

э

X : n-dimensional smooth projective variety over \mathbb{C} . $T_X :$ holomorphic tangent bundle of X. $-K_X := \det T_X$ anti-canonical line bundle.

If T_X is 'positive', then the structure of X is restricted.

'positive' means ample, nef, and so on...

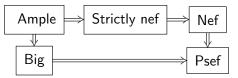
Positivity of vector bundles

E : vector bundle of X.

 $\pi:\mathbb{P}(E)\to X$: projective bundle of X.

- *E* is ample (resp. strictly nef, nef) $\Leftrightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ is ample (resp. strictly nef, nef) on $\mathbb{P}(E)$.
- *E* is big (big in the sense of Viehweg) $\Leftrightarrow \mathcal{O}_{\mathbb{P}(E)}(1)$ is big and $\pi \left(\mathbb{B}_{+}(\mathcal{O}_{\mathbb{P}(E)}(1)) \right) \neq X.$
- E is pseudo-effective (weakly positive in the sense of Nakayama)

 $\Leftrightarrow \mathcal{O}_{\mathbb{P}(E)}(1) \text{ is psef and } \pi\left(\mathbb{B}_{-}(\mathcal{O}_{\mathbb{P}(E)}(1))\right) \neq X.$

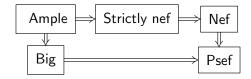


- The definition of ample (resp. strictly nef, nef, big, psef) coincides with the usual one if *E* is a line bundle.
- $T_{\mathbb{CP}^n}$ is ample.
- L_1, \dots, L_r : line bundles on X. Set $E := \bigoplus_{i=1}^r L_i$. E is ample (resp. strictly nef, nef, big, psef) iff any L_i is ample (resp. strictly nef, nef, big, psef).
- A : Abelian variety. Then T_A is nef.

If T_X is ample (nef, big, and so on...), then the structure of X is restricted.

Theorem

- (Mori 78) If T_X is ample, then $X \cong \mathbb{CP}^n$.
- **2** (Li-Ou-Yang 19) If T_X is strictly nef, then $X \cong \mathbb{CP}^n$.
- **(**Fulger-Murayama 21) If T_X is big, then $X \cong \mathbb{CP}^n$.



Theorem (Campana-Peternell 91, Demailly -Peternell-Schneider 94)

If T_X is nef, then there exist a finite étale morphism $\pi : \tilde{X} \to X$ and a smooth surjective morphism $\alpha : \tilde{X} \to A$ s.t.

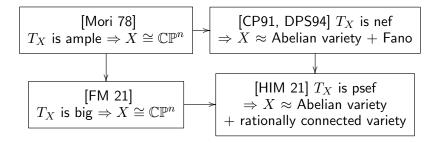
- A is an Abelian variety.
- Any fiber of α is Fano.

Theorem (Hosono-I.-Matsumura 21)

If T_X is psef, then there exist a finite étale morphism $\pi : \tilde{X} \to X$ and a smooth surjective morphism $\alpha : \tilde{X} \to A$ s.t.

- A is an Abelian variety.
- Any fiber of α is rationally connected.

$$\begin{bmatrix} \mathsf{LOY} \ 19 \end{bmatrix} \xrightarrow[]{\mathsf{Big}} \mathbb{CP}^n$$



If T_X is 'positive' (such as ample, nef, and so on), then we know the structure of X. Peternell proposed the following question.

Question (Peternell 01)

Let \mathcal{F} be a locally free subsheaf of T_X . What can be said on the structure of X if \mathcal{F} is nef or psef?

Theorem (Andreatta-Wiśniewski 01)

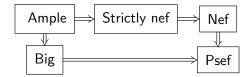
If \mathcal{F} is a rank r ample locally free subsheaf of T_X , then $X \cong \mathbb{CP}^n$ and $\mathcal{F} \cong \mathcal{O}_{\mathbb{CP}^n}(1)^{\oplus r}$ or $\mathcal{F} \cong T_{\mathbb{CP}^n}$.

Theorem (Liu-Ou-Yang 20)

If \mathcal{F} is a rank r strictly nef locally free subsheaf of T_X , then X admits a \mathbb{CP}^d -bundle structure $\phi: X \to Y$ for some $d \ge r$ s.t.

- $\mathcal{F} \cong T_{X/Y}$ or \mathcal{F} is projectively flat and $\mathcal{F}|_F \cong \mathcal{O}_{\mathbb{CP}^d}(1)^{\oplus r}$.
- Y is hyperbolic. (any holomorphic map $\mathbb{C} \to Y$ is constant.)

What can be said on the structure of X if $\mathcal{F} \subset T_X$ is nef, big, or psef?



We give a partial answer to Peternell's question.

Theorem (I. 20)

Let \mathcal{F} be a subbundle of T_X . Assume that \mathcal{F} is a foliation. If \mathcal{F} is psef, then there exists a smooth morphism $f: X \to Y$ s.t.

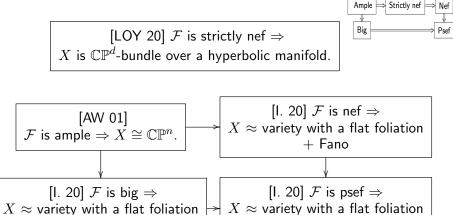
- Any fiber of f is rationally connected.
- There exists a numerically flat subbundle G of T_Y s.t G is a foliation.
- There exists an exact sequence of vector bundles:

$$0 \to T_{X/Y} \to \mathcal{F} \to f^*\mathcal{G} \to 0.$$

Corollary (I. 20)

Let \mathcal{F} be a rank r subbundle of T_X . Assume that \mathcal{F} is a foliation.

- **1** If \mathcal{F} is ample, then $X \cong \mathbb{CP}^n$ and $\mathcal{F} \cong T_{\mathbb{CP}^n}$.
- 2 If \mathcal{F} is nef and big, then $X \cong \mathbb{CP}^n$ and $\mathcal{F} \cong T_{\mathbb{CP}^n}$.
- **(3)** If \mathcal{F} is nef, then any fiber of f is Fano.
- If \mathcal{F} is big, then any fiber of f is \mathbb{CP}^r and $\mathcal{F} \cong T_{X/Y}$.



with a flat foliation
$$\rightarrow$$
 $X \approx$ variety with a flat foliation $+ \mathbb{CP}^r$ + rationally connected variety

What can be said on the structure of Yif $\mathcal{G} \subset T_Y$ is a numerically flat subbundle and foliation ?

 \mathcal{G} is numerically flat $\Rightarrow c_1(\mathcal{G}) = c_2(\mathcal{G}) = 0.$

- Case 1. $\mathcal{G} = T_Y$. By $c_1(T_Y) = c_2(T_Y) = 0$, \exists a finite étale $\pi : A \to Y$ s.t. A is an Abelian variety.
- Case 2. rank $\mathcal{G} = \dim Y 1$. This foliation is classified by [Touzet 08], [Pereira-Touzet 13] and [Druel 17]. (3 types)
- Case 3. rank $G = \dim Y 2$. This foliation is classified by [Druel 18]. (3 types)

Sketch proof -from the viewpoint of slopes-

A : ample line bundle on X. \mathcal{E} : torsion free coherent sheaf on X.

$$\mu_A(\mathcal{E}) := \frac{c_1(\mathcal{E})A^{n-1}}{\mathrm{rank}\mathcal{E}}$$

$$\mu_A^{min}(\mathcal{E}) := \inf\{\mu_A(\mathcal{Q}) : \mathcal{E} \twoheadrightarrow \mathcal{Q}\}\$$

The following theorem is obtained by combining [Miyaoka 87, Campana-Păun 19] with [Höring 07].

Theorem (Miyaoka 87, Campana-Păun 19 + Höring 07)

Let $\mathcal{E} \subset T_X$ be a subbundle and foliation. If $\mu_A^{min}(\mathcal{E}) > 0$, then there exists a smooth surjective morphism $f: X \to Y$ s.t.

• Any fiber of f is rationally connected.

•
$$\mathcal{E} = T_{X/Y}$$
.

We obtain the following decomposition theorem, which is a generalization of Fujita's decomposition. (We will discuss later.)

Theorem (I. 20)

Let \mathcal{F} be a psef vector bundle on X. Then there exist vector bundles \mathcal{E}, \mathcal{Q} s.t.

- \mathcal{E} is psef and $\mu_A^{min}(\mathcal{E}) > 0$ unless $\mathcal{E} = 0$.
- Q is numerically flat.
- There exists an exact sequence of vector bundles:

$$0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow \mathcal{Q} \longrightarrow 0.$$

 \Rightarrow

Assume that $\mathcal{F} \subset T_X$ is a subbundle, foliation and psef.

 $0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow \mathcal{Q} \longrightarrow 0.$

• $\mathcal{E} \subset T_X$ is a subbundle and foliation with $\mu_A^{min}(\mathcal{E}) > 0$. • \mathcal{Q} is numerically flat.

 $\Rightarrow \exists \text{ smooth surjective morphism } f:X \to Y$ s.t. any fiber of f is rationally connected and $\mathcal{E}=T_{X/Y}$

 $\Rightarrow \exists \mathcal{G} \subset T_Y \text{ s.t. } \mathcal{Q} = f^* \mathcal{G}.$

 \mathcal{G} is a numerically flat subbundle and foliation on Y.

F: a fiber of f.

- If \mathcal{F} is ample $\Rightarrow f^*\mathcal{G} = 0$, both $T_{X/Y}$ and T_F are ample $\Rightarrow \dim Y = 0, X \cong \mathbb{CP}^n$ and $\mathcal{F} \cong T_{\mathbb{CP}^n}$.
- 2 If \mathcal{F} is nef and big...(same argument!)
- **③** If \mathcal{F} is nef ⇒ T_F is nef and F is rationally connected ⇒ F is Fano
- $If \mathcal{F} is big \Rightarrow f^*\mathcal{G} = 0, T_F is big \Rightarrow F \cong \mathbb{CP}^r and \mathcal{F} \cong T_{X/Y}.$

Theorem (Fujita 77, Catanese-Dettweiler 17)

Let $f: X \to C$ be a surjective morphism from a compact Kähler manifold X to a smooth projective curve C. Then there exist vector bundles \mathcal{E}, \mathcal{Q} s.t.

- \mathcal{E} is ample unless $\mathcal{E} = 0$.
- Q is flat.
- $f_*(K_{X/C}) \cong \mathcal{E} \oplus \mathcal{Q}$

By a similar argument of the decomposition of psef vector bundles, we have the following theorem.

Theorem (I. 20)

Let $f : X \to Y$ be a surjective morphism with connected fibers from a compact Kähler manifold X to a smooth projective variety Y. Let A be an ample line bundle on Y. For any $m \in \mathbb{N}$, there exist reflexive sheaves \mathcal{E}, \mathcal{Q} s.t.

- \mathcal{E} is psef and $\mu_A^{min}(\mathcal{E}) > 0$ unless $\mathcal{E} = 0$.
- Q is hermitian flat vector bundle.

•
$$f_*(mK_{X/Y})^{\vee\vee} \cong \mathcal{E} \oplus \mathcal{Q}$$

In particular, if Y is a curve, for any $m \in \mathbb{N}$, we have

$$f_*(mK_{X/Y})\cong \mathcal{E}\oplus \mathcal{Q},$$

where \mathcal{E} is an ample vector bundle and \mathcal{Q} is a hermitian flat vector bundle.

Thank you for your attention!

э