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In this talk,
X is a smooth projective variety(manifold) over C (X ⊂ CPN).
L is a line bundle on X .

Problem
How many smooth projective varieties?
How to classify smooth projective varieties?
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In dimension 1, X is a Riemann surface. We can classify a
genus.
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In dimension 2, Enriques and Kodaira classified a smooth
complex surfaces.

The key is...

There exists a smooth surface Xmin such that

f : X → Xmin

where f is a composition of blow-ups and Xmin is ”minimal”
(Xmin does not have blow-ups).

Enriques and Kodaira classified Xmin.
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Higher dimensional case

Definition
L is ample⇔ ∃m ∈ N>0 and
∃s0(x), . . . , sN(x) ∈ H0(X , L⊗m) s.t.
ϕ|L⊗m | : X → CPN

x → (s0(x) : · · · : sN(x))
is embbeding.

L is nef
def
⇔ ∀C ⊂ X : curve,L .C ≥ 0

L is big
def
⇔ lim supk→+∞

dimH0(X ,L⊗k )

kn > 0

L is pseudo-effective
def
⇔ ∃A : ample and ∀m ∈ N>0,

L⊗m ⊗ A is big.
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Algebraic Geometry

Ample
∃m ∈ N>0 s.t.
ϕ|L⊗m | is embedding

Nef
∀C ⊂ X :curve

L .C ≥ 0

Big
lim supk→+∞

dim H0(X , L⊗k )/(k n) > 0

Pseudo
effective

∃ A : ample
and ∀ m ∈ N>0, s.t.
L⊗m ⊗ A is big.
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Minimal model conjecture

We consider a canonical bundle KX B det(TX )−1.

Definition
If KX is nef, we call X is a minimal model.

Conjecture (Minimal model conjecture (a little modified))
If KX is pseudo-effective, does X have minimal model?

X has minimal model if there exists f B X d Xmin such that
Xmin is minimal model. (f is a composition of flip and divisorial
contraction)
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Minimal model conjecture

If dim X ≤ 2 then X has minimal model. (By Riemann,
Enriqus, Kodaira and so on.)

Theorem (Mori)
If dim X = 3, Minimal model conjecture is true.

Theorem (Birkar-Casini-Hacon-Mckernan 2010)
If KX is big , then X has a minimal model.
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singular Hermitian metric

Theorem (Kodaira 53)
Then L is ample if and only if L has a smooth metric with
positive curvature.

It is so-called Kodaira embedding Theorem.
The same things hold if L is nef, big, or pseudo-effective.

Masataka Iwai (The Univ. of Tokyo) Recent topics in singular Hermitian metrics 9 / 33



Before the next results...

h is a singular Hermitian metric (sHm) on L
def
⇔ ∃ a smooth metric h0 and ϕ ∈ L1

loc(X) s.t. h = h0e−ϕ

The curvature current
√
−1ΘL ,h B

√
−1ΘL ,h0 +

√
−1∂∂ϕ

for any sHm h.

Masataka Iwai (The Univ. of Tokyo) Recent topics in singular Hermitian metrics 10 / 33



Before the next results...
h is a singular Hermitian metric (sHm) on L
def
⇔ ∃ a smooth metric h0 and ϕ ∈ L1

loc(X) s.t. h = h0e−ϕ

The curvature current
√
−1ΘL ,h B

√
−1ΘL ,h0 +

√
−1∂∂ϕ

for any sHm h.

Masataka Iwai (The Univ. of Tokyo) Recent topics in singular Hermitian metrics 10 / 33



Before the next results...
h is a singular Hermitian metric (sHm) on L
def
⇔ ∃ a smooth metric h0 and ϕ ∈ L1

loc(X) s.t. h = h0e−ϕ

The curvature current
√
−1ΘL ,h B

√
−1ΘL ,h0 +

√
−1∂∂ϕ

for any sHm h.

Masataka Iwai (The Univ. of Tokyo) Recent topics in singular Hermitian metrics 10 / 33



Theorem (Demailly 92)
Let ω be a Kähler form.

L is nef⇔ ∀ε > 0,∃hε smooth metric, s.t.√
−1ΘL ,hε + εω ≥ 0.

L is big⇔ ∃ε > 0,∃h sHm, s.t.
√
−1ΘL ,h − εω ≥ 0 in the

sense of current.
L is pseudo-effective⇔ ∃h sHm, s.t.

√
−1ΘL ,h ≥ 0 in

the sense of current.
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Algebraic Geometry (singular) Hermitian metric

Ample
∃m ∈ N>0 s.t.
ϕ|L⊗m | is embedding

∃ε > 0,∃h smooth metric,
s.t.
√
−1ΘL ,h − εω ≥ 0

Nef
∀C ⊂ X :curve

L .C ≥ 0
∀ε > 0,∃hε smooth metric,
s.t.
√
−1ΘL ,hε + εω ≥ 0.

Big
lim supk→+∞

dim H0(X , L⊗k )/(k n) > 0

∃ε > 0,∃h sHm, s.t.
√
−1ΘL ,h − εω ≥ 0

in the sense of current.

Pseudo
effective

∃ A : ample
and ∀ m ∈ N>0, s.t.
L⊗m ⊗ A is big.

∃h sHm, s.t.
√
−1ΘL ,h ≥ 0

in the sense of current.

Ample⇒ Nef, Ample⇒ Big, Big or Nef⇒ Pseudo-effective
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Recent topics in singular Hermitian metrics

We consider a morphism f : X → Y between smooth
projective varieties.
In this talk, I will introduce two topics.

KX/Y B KX ⊗ f ∗(KY )−1 has a semipositive canonical
singular Hermitian metric.
f∗(KX/Y ) has a semipositive canonical singular Hermitian
metric.
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Theorem (Berndtsson-Paun 08)

Let f : X → Y be a surjective morphism of smooth projective
varieties. Assume that there exists a regular value y ∈ Y
such that H0

(
Xy ,K⊗a

Xy

)
, 0.

Then the bundle K⊗a
X/Y admits a sHm ha such that

√
−1ΘL ,ha ≥ 0 in the sense of current.

For any regular value w ∈ Y and any section
s ∈ H0

(
Xw ,K⊗a

Xw

)
we have

|s|
2
a
ha

(z) ≤

∫
Xw

|s|
2
a < +∞

for any z ∈ Xw . (|s|
2
a as a semipositive continuous

(m,m) form where m = dim Xw .)
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ha is a ”canonical” singular Hermitian metric on K⊗a
X/Y .

The condition
√
−1ΘL ,ha ≥ 0 is useful.

|s|
2
a
ha

(z) < +∞ is also useful. (Maybe ha has a singular
point, that is ha(z) = +∞)
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Application

Conjecture (Popa-Schnell 14)
Let f : X → Y be a surjective morphism of smooth projective
varieties, with Y of dimension n, and L be an ample line
bundle on Y.

For any a ≥ 1, is the sheaf

f∗(K⊗a
X ) ⊗ L⊗b

globally generated for all b ≥ a(n + 1)?
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If X = Y and f is an identity map, Popa-Schnell conjecture
implies the following Fujita’s freeness conjecture.

Conjecture (Fujita’s freeness conjecture)
Let X be a smooth projective n-dimensional variety and L be
an ample line bundle on X. Is the line bundle KX ⊗ L⊗n+1

globally generated?

This conjecture is also open.
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Partial result of Popa-Schnell’s conjecture

(Popa-Schnell 14) If L is ample and globally generated,
this conjecture holds.

(Dutta 17) f∗(K⊗a
X ) ⊗ L⊗b is generated by the global

sections at a general point y ∈ Y for all
b ≥ a

(
n(n+1)

2 + 1
)
.

(Deng 17) f∗(K⊗a
X ) ⊗ L⊗b is generated by the global

sections at a general point y ∈ Y for all
b ≥ n2 − n + a(n + 1).
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Theorem (I.17)

Let f : X → Y be a surjective morphism of smooth projective
varieties, with Y of dimension n, and L be an ample line
bundle on Y.

If y is a regular value of f , then for any a ≥ 1
the sheaf

f∗(K⊗a
X ) ⊗ L⊗b

is generated by the global sections at y for all
b ≥ n(n−1)

2 + a(n + 1).

By using result, if f is smooth, f∗(K⊗a
X ) ⊗ L⊗b is globally

generated on Y for all b ≥ n(n−1)
2 + a(n + 1).
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Idea of proof

We show that for any regular value y ∈ Y , any section

s ∈ H0
(
Xy ,K⊗a

Xy
⊗ f ∗(L)⊗b |Xy

)
can be extended to X .

1 We take a good singular Hermitian metric into
K⊗a−1

X ⊗ f ∗(L⊗b).
2 There exists a neighborhood V 3 y and a section SV on

f−1(V) such that SV |Xy = s.(by using relative version of
Ohsawa-Takegoshi L2 extension.)

3 We solve a ∂-equation to extend the section SV .

We explain (1) and (2).
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Theorem (relative version of Ohsawa-Takegoshi L2

extension)

Let (M, h) be a line bundle on X with sHm h such that√
−1ΘM,h ≥ 0.

We take a small open neighborhood V 3 y.

Then for any
s ∈ H0(Xy ,KXy ⊗M|Xy ) such that

∫
Xy
|s|2h < +∞, there exists

SV ∈ H0(f−1(V),KX ⊗M) such that
SV |Xy = s and

∫
f−1(V)

|SV |
2
h < +∞
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We take
M B K⊗a−1

X ⊗ f ∗L⊗b

We have KX ⊗M = K⊗a
X ⊗ f ∗L⊗b and

M = K⊗a−1
X/Y︸︷︷︸

has sHm ha−1
a

⊗ f ∗(KY ⊗ L⊗n+1)⊗a−1︸                  ︷︷                  ︸
has metric hsemiposi

⊗ f ∗L⊗b̃︸︷︷︸
has metric hposi

Then M has sHm h such that
√
−1ΘM,h ≥ 0 and∫

Xy

|s|2h < +∞.

We can use OT-extension theorem. ( |SV |h is bounded above
for the extension SV of s)
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Recent topics in singular Hermitian metrics

Theorem ( Berndtsson- Paun 08, Păun Takayama 14)
For any surjective projective morphism f : X → Y between
smooth complex manifold with connected fibers,

f∗(K⊗m
X/Y ) can

be endowed a Griffith semipositive singular Hermitian metric
hNS called ”Narasimhan-Simha” metric (if f∗(K⊗m

X/Y ) , 0 ).

f∗(K⊗m
X/Y ) is NOT line bundle. So, we must define ”Griffith

semipositive” ”singular Hermitian metrics on vector bundles
and torsion free coherent sheaves”
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(Paun-Takayama 14, Takayama 17) The singular
Hermitian metric hNS captures the feature of f . hNS is
continuous on the regular locus of f

(Cao-Paun 17, Hacon-Popa-Schnell 17) If det f∗(K⊗m
X/Y ) is

numerically zero (c1(f∗(K⊗m
X/Y )) = 0) then f∗(K⊗m

X/Y ) is flat
vector bundle and hNS is smooth.
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Definition of sHm on vector bundle

We adopt the definition by Hacon,Popa, and Schnell. (This
definition is easy to understand)

Definition (Hacon-Popa-Schnell 17 )
A singular Hermitian inner product on a finite dimensional
complex vector space V is a function | − |h : V → [0,+∞] with
the following properties:

1 |α · v |h = |α||v |h : ∀α ∈ C \ 0,∀v ∈ V
2 |0|h = 0
3 |v + w |h ≤ |v |h + |w |h : ∀v ,w ∈ V
4 |v + w |2h + |v − w |2h = |v |2h + |w |2h : ∀v ,w ∈ V
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Definition (deCataldo 98, Berndtsson-Păun 08,
Hacon-Popa-Schnell 17 )
Let X be a complex manifold and E be a holomorphic vector
bundle.
A singular Hermitian metric (sHm) on E is a function h that
associates to any x ∈ X a singular Hermitian inner product
| − |h,x : Ex → [0,+∞] with the following properties:

1 |v |h,x = 0⇔ v = 0 for almost everywhere x
2 |v |h,x < +∞ : ∀v ∈ Ex for almost everywhere x
3 For any open U and any s ∈ H0(U,E),

|s|h : U → [0,+∞] ; x → |s(x)|h,x

is measurable function.
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Definition (Berndtsson-Păun 08, Păun-Takayama 14,
Hacon-Popa-Schnell 17)

1 A sHm h on E is Griffiths seminegative if the function
log |u|2h is plurisubharmonic for any local section u of E.

2 A sHm h on E is Griffiths semipositive if the dual metric
h∗ = th−1 on the dual vector bundle E∗ is Griffiths
seminegative.

When h is smooth, h is Griffiths seminegative (in the
usual sense) iff log |u|2h is plurisubharmonic for any local
section u of E.
If E is a line bundle, h is Griffiths semipositive sHm iff√
−1ΘE,h ≥ 0 in the sense of current.
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Applications -Viehweg’s weakly positivity-

Definition
1 E is dd-ample if there exist x ∈ X ,a ∈ N>0 and ample

line bundle A such that
Syma(E) ⊗ A−1 is globally generated at x.

2 E is pseudo-effective there exist x ∈ X and ample line
bundle A such that for any a ∈ N>0,
there exists b ∈ N>0 such that Symab(E) ⊗ Ab is globally
generated at x

(Viehweg 83) f∗(mKX/Y ) is pseudo-effective for any
fibration f : X → Y . (In fact f∗(mKX/Y ) is weakly-positive.)

Masataka Iwai (The Univ. of Tokyo) Recent topics in singular Hermitian metrics 28 / 33



Applications -Viehweg’s weakly positivity-

Definition
1 E is dd-ample if there exist x ∈ X ,a ∈ N>0 and ample

line bundle A such that
Syma(E) ⊗ A−1 is globally generated at x.

2 E is pseudo-effective there exist x ∈ X and ample line
bundle A such that for any a ∈ N>0,
there exists b ∈ N>0 such that Symab(E) ⊗ Ab is globally
generated at x

(Viehweg 83) f∗(mKX/Y ) is pseudo-effective for any
fibration f : X → Y . (In fact f∗(mKX/Y ) is weakly-positive.)

Masataka Iwai (The Univ. of Tokyo) Recent topics in singular Hermitian metrics 28 / 33



Algebraic Geometry singular Hermitian metric

dd-
ample

∃x ∈ X , ∃A ample,
∃a, ∈ N s.t.
Syma(E) ⊗ A−1

is globally generated at x

pseudo
effective

∃x ∈ X , ∃A ample,s.t.
∀a ∈ N, ∃b , ∈ N, s.t.
Symab(E) ⊗ Aa

is globally generated at x
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Theorem (I. 18)
1 E is dd-ample iff there exist a ∈ N>0 and an ample line

bundle A such that Syma(E) ⊗ A−1 has a Griffiths
semipositive singular Hermitian metric h.
(Moreover h is smooth and Nakano semipositive on
Zariski open set.)

2 E is pseudo-effective iff there exists an ample line
bundle A such that Syma(E) ⊗ A has a Griffiths
semipositive singular Hermitian metric for any a ∈ N>0.
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Algebraic Geometry singular Hermitian metric

dd-
ample

∃x ∈ X , ∃A ample,
∃a, ∈ N s.t.
Syma(E) ⊗ A−1

is globally generated at x

∃a, ∈ N ,∃A ample s.t.
Syma(E) ⊗ A−1 has
Griffiths semipositive sHm

pseudo
effective

∃x ∈ X , ∃A ample,s.t.
∀a ∈ N, ∃b , ∈ N, s.t.
Symab(E) ⊗ Aa

is globally generated at x

∃A ample s.t.∀a ∈ N
Syma(E) ⊗ A has Griffith
semipositive sHm
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Theorem (Păun-Takayama 14)
If E has a Griffith semipositive sHm h, then E is
pseudo-effective.

Proof.
∀a ∈ N, ∀A ample, Syma(E) ⊗ A has Griffith semipositive
Syma(h) ⊗ hA . �

(Hosono 17) There exists a pseudo-effective vector bundle E
such that E does NOT have a Griffith semipositive sHm.
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Outlook

Outlook
Find other applications of vector bundles and torsion-free
coherent sheaves with sHm.

vanishing theorems about Ω(log D) (Matsuki et al.)
Seshadri constants (Lehman-Murayama.)
Hodge theory (f∗(K m

X/Y )) is difficult for Hodge Theory
but...)
Application of degeneration problem (f : X → Y is
morphism with general type fiber. Does f∗(K m

X/Y ) have
Griffiths positive singular Hermitian metric? Actually
f∗(K m

X/Y ) is dd-ample)
singular Kobayashi Hitchin correspondence (like
singular Kähler Einstein...)
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