Recent topics in singular Hermitian metrics

Masataka Iwai

The University of Tokyo

Tohoku Geometry seminar, April, 16, 2019

In this talk, X is a smooth projective variety(manifold) over \mathbb{C} ($X \subset \mathbb{CP}^N$). L is a line bundle on X. In this talk,

X is a smooth projective variety(manifold) over \mathbb{C} ($X \subset \mathbb{CP}^N$). *L* is a line bundle on *X*.

Problem

How many smooth projective varieties? How to classify smooth projective varieties? In dimension 1, X is a Riemann surface. We can classify a genus.

In dimension 2, Enriques and Kodaira classified a smooth complex surfaces.

In dimension 2, Enriques and Kodaira classified a smooth complex surfaces. The key is...

There exists a smooth surface X_{min} such that

 $f: X \rightarrow X_{min}$

where *f* is a composition of blow-ups and X_{min} is "minimal" (X_{min} does not have blow-ups).

Enriques and Kodaira classified X_{min} .

• *L* is ample
$$\Leftrightarrow \exists m \in \mathbb{N}_{>0}$$
 and
 $\exists s_0(x), \dots, s_N(x) \in H^0(X, L^{\otimes m})$ s.t.
 $\varphi_{|L^{\otimes m|}} : X \to \mathbb{CP}^N$
 $x \to (s_0(x) : \dots : s_N(x))$ is embbeding.

• *L* is ample
$$\Leftrightarrow \exists m \in \mathbb{N}_{>0}$$
 and
 $\exists s_0(x), \dots, s_N(x) \in H^0(X, L^{\otimes m})$ s.t.
 $\varphi_{|L^{\otimes m}|} : X \to \mathbb{CP}^N$
 $x \to (s_0(x) : \dots : s_N(x))$ is embbeding.

• *L* is nef $\Leftrightarrow \forall C \subset X$: curve, $L.C \ge 0$

• *L* is ample
$$\Leftrightarrow \exists m \in \mathbb{N}_{>0}$$
 and
 $\exists s_0(x), \dots, s_N(x) \in H^0(X, L^{\otimes m})$ s.t.
 $\varphi_{|L^{\otimes m}|} : X \to \mathbb{CP}^N$
 $x \to (s_0(x) : \dots : s_N(x))$ is embbeding.
• *L* is nef $\stackrel{def}{\Leftrightarrow} \forall C \subset X$: curve, $L.C \ge 0$
• *L* is big $\stackrel{def}{\Leftrightarrow} \limsup_{k \to +\infty} \frac{\dim H^0(X, L^{\otimes k})}{k^n} > 0$

• L is ample $\Leftrightarrow \exists m \in \mathbb{N}_{>0}$ and $\exists s_0(x),\ldots,s_N(x)\in H^0(X,L^{\otimes m})$ s.t. $\varphi_{|I \otimes m|} : X \rightarrow \mathbb{CP}^N$ is embbeding. $x \rightarrow (s_0(x) : \cdots : s_N(x))$ • L is nef $\stackrel{\text{def}}{\Leftrightarrow} \forall C \subset X$: curve, $L.C \geq 0$ • L is big $\stackrel{\text{def}}{\Leftrightarrow} \limsup_{k \to +\infty} \frac{\dim H^0(X, L^{\otimes k})}{k^n} > 0$ • L is pseudo-effective $\stackrel{\text{def}}{\Leftrightarrow} \exists A$: ample and $\forall m \in \mathbb{N}_{>0}$. $L^{\otimes m} \otimes A$ is big.

	Algebraic Geometry	
Amplo	$\exists m \in \mathbb{N}_{>0}$ s.t.	
Ample	$arphi_{ L^{\otimes m} }$ is embedding	
Nof	$\forall C \subset X$:curve	
INEI	$L.C \ge 0$	
Big	$\limsup_{k \to +\infty} \dim H^0(X, L^{\otimes k})/(k^n) > 0$	
Pseudo effective	∃ A: ample and $\forall m \in \mathbb{N}_{>0}$, s.t. $L^{\otimes m} \otimes A$ is big.	

We consider a canonical bundle $K_X := \det(T_X)^{-1}$.

Definition

If K_X is nef, we call X is a minimal model.

We consider a canonical bundle $K_X := \det(T_X)^{-1}$.

Definition

If K_X is nef, we call X is a minimal model.

Conjecture (Minimal model conjecture (a little modified))

If K_X is pseudo-effective, does X have minimal model?

X has minimal model if there exists $f := X \rightarrow X_{min}$ such that X_{min} is minimal model. (f is a composition of flip and divisorial contraction)

If dim $X \le 2$ then X has minimal model. (By Riemann, Enriqus, Kodaira and so on.)

If dim $X \le 2$ then X has minimal model. (By Riemann, Enriqus, Kodaira and so on.)

Theorem (Mori)

If dim X = 3, Minimal model conjecture is true.

If dim $X \le 2$ then X has minimal model. (By Riemann, Enriqus, Kodaira and so on.)

Theorem (Mori)

If dim X = 3, Minimal model conjecture is true.

Theorem (Birkar-Casini-Hacon-Mckernan 2010)

If K_X is big, then X has a minimal model.

Theorem (Kodaira 53)

Then L is ample if and only if L has a smooth metric with positive curvature.

It is so-called Kodaira embedding Theorem. The same things hold if L is nef, big, or pseudo-effective. Before the next results...

Before the next results...

h is a singular Hermitian metric (sHm) on L
 def ∃ a smooth metric h₀ and φ ∈ L¹_{loc}(X) s.t. h = h₀e^{-φ}

Before the next results...

- *h* is a singular Hermitian metric (sHm) on L
 def ∃ a smooth metric h₀ and φ ∈ L¹_{loc}(X) s.t. h = h₀e^{-φ}
- The curvature current $\sqrt{-1}\Theta_{L,h} \coloneqq \sqrt{-1}\Theta_{L,h_0} + \sqrt{-1}\partial\overline{\partial}\varphi$ for any sHm *h*.

Theorem (Demailly 92)

Let ω be a Kähler form.

• L is nef
$$\Leftrightarrow \forall \epsilon > 0, \exists h_{\epsilon} \text{ smooth metric, s.t.}$$

 $\sqrt{-1}\Theta_{L,h_{\epsilon}} + \epsilon \omega \geq 0.$

Theorem (Demailly 92)

Let ω be a Kähler form.

- L is nef $\Leftrightarrow \forall \epsilon > 0, \exists h_{\epsilon} \text{ smooth metric, s.t.}$ $\sqrt{-1}\Theta_{L,h_{\epsilon}} + \epsilon \omega \geq 0.$
- L is big ⇔ ∃ε > 0,∃h sHm, s.t. √-1Θ_{L,h} εω ≥ 0 in the sense of current.

Theorem (Demailly 92)

Let ω be a Kähler form.

- L is nef $\Leftrightarrow \forall \epsilon > 0, \exists h_{\epsilon} \text{ smooth metric, s.t.}$ $\sqrt{-1}\Theta_{L,h_{\epsilon}} + \epsilon \omega \geq 0.$
- L is big ⇔ ∃ε > 0,∃h sHm, s.t. √-1Θ_{L,h} εω ≥ 0 in the sense of current.
- L is pseudo-effective ⇔ ∃h sHm, s.t. √-1Θ_{L,h} ≥ 0 in the sense of current.

	Algebraic Geometry	(singular) Hermitian metric
Ample	$\exists m \in \mathbb{N}_{>0}$ s.t.	$\exists \epsilon > 0, \exists h \text{ smooth metric,}$
	$arphi_{ L^{\otimes m} }$ is embedding	s.t. $\sqrt{-1}\Theta_{L,h} - \epsilon \omega \ge 0$
Nef	$\forall C \subset X$:curve	$\forall \epsilon > 0, \exists h_{\epsilon} \text{ smooth metric,}$
	$L.C \ge 0$	s.t. $\sqrt{-1}\Theta_{L,h_{\epsilon}} + \epsilon \omega \ge 0.$
Big	lim cup	$\exists \epsilon > 0, \exists h \text{ sHm}, \text{ s.t.}$
	$\dim \operatorname{Sup}_{k \to +\infty} d\operatorname{im} H^0(X, L^{\otimes k})/(k^n) > 0$	$\sqrt{-1}\Theta_{L,h} - \epsilon \omega \ge 0$
		in the sense of current.
Pseudo effective	∃ A: ample	∃ <i>h</i> sHm, s.t.
	and $\forall m \in \mathbb{N}_{>0}$, s.t.	$\sqrt{-1}\Theta_{L,h} \ge 0$
	$L^{\otimes m} \otimes A$ is big.	in the sense of current.

	Algebraic Geometry	(singular) Hermitian metric
Ample	$\exists m \in \mathbb{N}_{>0}$ s.t.	$\exists \epsilon > 0, \exists h \text{ smooth metric,}$
	$arphi_{ L^{\otimes m} }$ is embedding	s.t. $\sqrt{-1}\Theta_{L,h} - \epsilon \omega \ge 0$
Nef	$\forall C \subset X$:curve	$\forall \epsilon > 0, \exists h_{\epsilon} \text{ smooth metric,}$
	$L.C \ge 0$	s.t. $\sqrt{-1}\Theta_{L,h_{\epsilon}} + \epsilon \omega \ge 0.$
Big	limsup	$\exists \epsilon > 0, \exists h \text{ sHm}, \text{ s.t.}$
	$\dim \operatorname{Sup}_{k \to +\infty} d\operatorname{im} H^0(X, L^{\otimes k})/(k^n) > 0$	$\sqrt{-1}\Theta_{L,h} - \epsilon \omega \ge 0$
		in the sense of current.
Pseudo effective	∃ A: ample	∃ <i>h</i> sHm, s.t.
	and $\forall m \in \mathbb{N}_{>0}$, s.t.	$\sqrt{-1}\Theta_{L,h} \ge 0$
	$L^{\otimes m} \otimes A$ is big.	in the sense of current.

Ample \Rightarrow Nef, Ample \Rightarrow Big, Big or Nef \Rightarrow Pseudo-effective

We consider a morphism $f: X \rightarrow Y$ between smooth projective varieties. In this talk, I will introduce two topics. We consider a morphism $f: X \rightarrow Y$ between smooth projective varieties.

In this talk, I will introduce two topics.

- *K*_{X/Y} ≔ *K*_X ⊗ *f*^{*}(*K*_Y)⁻¹ has a semipositive canonical singular Hermitian metric.
- f_{*}(K_{X/Y}) has a semipositive canonical singular Hermitian metric.

Theorem (Berndtsson-Paun 08)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties. Assume that there exists a regular value $y \in Y$ such that $H^0(X_y, K_{X_y}^{\otimes a}) \neq 0$.

Theorem (Berndtsson-Paun 08)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties. Assume that there exists a regular value $y \in Y$ such that $H^0(X_y, K_{X_y}^{\otimes a}) \neq 0$. Then the bundle $K_{X/Y}^{\otimes a}$ admits a sHm h_a such that

• $\sqrt{-1}\Theta_{L,h_a} \ge 0$ in the sense of current.

Theorem (Berndtsson-Paun 08)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties. Assume that there exists a regular value $y \in Y$ such that $H^0(X_y, K_{X_y}^{\otimes a}) \neq 0$. Then the bundle $K_{X_IY}^{\otimes a}$ admits a sHm h_a such that

- $\sqrt{-1}\Theta_{L,h_a} \ge 0$ in the sense of current.
- For any regular value w ∈ Y and any section s ∈ H⁰(X_w, K^{⊗a}_{X_w}) we have

$$|\mathbf{S}|_{h_a}^{\frac{2}{a}}(Z) \leq \int_{X_w} |\mathbf{S}|^{\frac{2}{a}} < +\infty$$

for any $z \in X_w$. ($|s|^{\frac{2}{a}}$ as a semipositive continuous (m, m) form where $m = \dim X_w$.)

- h_a is a "canonical" singular Hermitian metric on $K_{X/Y}^{\otimes a}$.
- The condition $\sqrt{-1}\Theta_{L,h_a} \ge 0$ is useful.
- $|s|_{h_a}^{\frac{2}{a}}(z) < +\infty$ is also useful. (Maybe h_a has a singular point, that is $h_a(z) = +\infty$)

Conjecture (Popa-Schnell 14)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y.

Conjecture (Popa-Schnell 14)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y. For any $a \ge 1$, is the sheaf

 $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$

globally generated for all $b \ge a(n+1)$?

If X = Y and f is an identity map, Popa-Schnell conjecture implies the following Fujita's freeness conjecture.

If X = Y and f is an identity map, Popa-Schnell conjecture implies the following Fujita's freeness conjecture.

Conjecture (Fujita's freeness conjecture)

Let X be a smooth projective n-dimensional variety and L be an ample line bundle on X. Is the line bundle $K_X \otimes L^{\otimes n+1}$ globally generated?

This conjecture is also open.

Partial result of Popa-Schnell's conjecture

• (Popa-Schnell 14) If *L* is ample and globally generated, this conjecture holds.

Partial result of Popa-Schnell's conjecture

- (Popa-Schnell 14) If *L* is ample and globally generated, this conjecture holds.
- (Dutta 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ a(ⁿ⁽ⁿ⁺¹⁾/₂ + 1).
- (Deng 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ n² − n + a(n + 1).

Theorem (I.17)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y.

Theorem (I.17)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y. If y is a **regular value** of f, then for any $a \ge 1$ the sheaf

 $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$

is generated by the global sections at y for all $b \ge \frac{n(n-1)}{2} + a(n+1).$

Theorem (I.17)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y. If y is a **regular value** of f, then for any $a \ge 1$ the sheaf

 $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$

is generated by the global sections at y for all $b \ge \frac{n(n-1)}{2} + a(n+1)$.

By using result, if *f* is smooth, $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$ is globally generated on *Y* for all $b \ge \frac{n(n-1)}{2} + a(n+1)$.

$$s \in H^0 ig(X_y, K_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y} ig)$$

can be extended to X.

$$s \in H^0 ig(X_y, K_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y} ig)$$

can be extended to X.

 We take a good singular Hermitian metric into K_x^{⊗a-1} ⊗ f^{*}(L^{⊗b}).

$$s \in H^0 ig(X_y, extsf{K}_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y} ig)$$

can be extended to X.

- We take a good singular Hermitian metric into K_X^{⊗a-1} ⊗ f^{*}(L^{⊗b}).
- There exists a neighborhood V ∋ y and a section S_V on f⁻¹(V) such that S_V|_{X_y} = s.(by using relative version of Ohsawa-Takegoshi L² extension.)

$$s \in H^0 ig(X_y, extsf{K}_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y} ig)$$

can be extended to X.

- We take a good singular Hermitian metric into K_X^{⊗a-1} ⊗ f^{*}(L^{⊗b}).
- There exists a neighborhood V ∋ y and a section S_V on f⁻¹(V) such that S_V|_{X_y} = s.(by using relative version of Ohsawa-Takegoshi L² extension.)
- We solve a $\overline{\partial}$ -equation to extend the section S_V .

We explain (1) and (2).

Theorem (relative version of Ohsawa-Takegoshi L^2 extension)

Let (M, h) be a line bundle on X with sHm h such that $\sqrt{-1\Theta_{M,h}} \ge 0$.

We take a small open neighborhood $V \ni y$.

Theorem (relative version of Ohsawa-Takegoshi L^2 extension)

Let (M, h) be a line bundle on X with sHm h such that $\sqrt{-1\Theta_{M,h}} \ge 0$. We take a small open neighborhood V \ni y. Then for any

 $s \in H^0(X_y, K_{X_y} \otimes M|_{X_y})$ such that $\int_{X_y} |s|_h^2 < +\infty$,

Theorem (relative version of Ohsawa-Takegoshi L^2 extension)

Let (M, h) be a line bundle on X with sHm h such that $\sqrt{-1}\Theta_{M,h} \ge 0$. We take a small open neighborhood V \ni y. Then for any $s \in H^0(X_y, K_{X_y} \otimes M|_{X_y})$ such that $\int_{X_y} |s|_h^2 < +\infty$, there exists $S_V \in H^0(f^{-1}(V), K_X \otimes M)$ such that $S_V|_{X_y} = s$ and $\int_{f^{-1}(V)} |S_V|_h^2 < +\infty$

We take

$$M \coloneqq K_X^{\otimes a-1} \otimes f^* L^{\otimes b}$$

We take

$$M \coloneqq K_X^{\otimes a-1} \otimes f^* L^{\otimes b}$$

We have $K_X \otimes M = K_X^{\otimes a} \otimes f^* L^{\otimes b}$ and

$$M = \underbrace{K_{X/Y}^{\otimes a-1}}_{\text{has sHm } h_a^{a-1}} \otimes \underbrace{f^*(K_Y \otimes L^{\otimes n+1})^{\otimes a-1}}_{\text{has metric } h_{semiposi}} \otimes \underbrace{f^*L^{\otimes \tilde{b}}}_{\text{has metric } h_{posl}}$$

We take

$$M \coloneqq K_X^{\otimes a-1} \otimes f^* L^{\otimes b}$$

We have $K_X \otimes M = K_X^{\otimes a} \otimes f^* L^{\otimes b}$ and

Then *M* has sHm *h* such that $\sqrt{-1}\Theta_{M,h} \ge 0$ and

$$\int_{X_{y}}|\boldsymbol{s}|_{h}^{2}<+\infty.$$

We can use OT-extension theorem. ($|S_V|_h$ is bounded above for the extension S_V of s)

Recent topics in singular Hermitian metrics

Theorem (Berndtsson- Paun 08, Păun Takayama 14)

For any surjective projective morphism $f: X \rightarrow Y$ between smooth complex manifold with connected fibers,

Theorem (Berndtsson- Paun 08, Păun Takayama 14)

For any surjective projective morphism $f: X \to Y$ between smooth complex manifold with connected fibers, $f_*(K_{X/Y}^{\otimes m})$ can be endowed a Griffith semipositive singular Hermitian metric h_{NS} called "Narasimhan-Simha" metric (if $f_*(K_{X/Y}^{\otimes m}) \neq 0$).

Theorem (Berndtsson- Paun 08, Păun Takayama 14)

For any surjective projective morphism $f: X \to Y$ between smooth complex manifold with connected fibers, $f_*(K_{X/Y}^{\otimes m})$ can be endowed a Griffith semipositive singular Hermitian metric h_{NS} called "Narasimhan-Simha" metric (if $f_*(K_{X/Y}^{\otimes m}) \neq 0$).

 $f_*(K_{X/Y}^{\otimes m})$ is NOT line bundle. So, we must define "Griffith semipositive" "singular Hermitian metrics on vector bundles and torsion free coherent sheaves"

 (Paun-Takayama 14, Takayama 17) The singular Hermitian metric h_{NS} captures the feature of f. h_{NS} is continuous on the regular locus of f

- (Paun-Takayama 14, Takayama 17) The singular Hermitian metric h_{NS} captures the feature of *f*. h_{NS} is continuous on the regular locus of *f*
- (Cao-Paun 17, Hacon-Popa-Schnell 17) If det f_{*}(K^{⊗m}_{X/Y}) is numerically zero (c₁(f_{*}(K^{⊗m}_{X/Y})) = 0) then f_{*}(K^{⊗m}_{X/Y}) is flat vector bundle and h_{NS} is smooth.

We adopt the definition by Hacon,Popa, and Schnell. (This definition is easy to understand)

Definition (Hacon-Popa-Schnell 17)

A singular Hermitian inner product on a finite dimensional complex vector space V is a function $|-|_h: V \rightarrow [0, +\infty]$ with the following properties:

$$|\mathbf{v} + \mathbf{w}|_h \le |\mathbf{v}|_h + |\mathbf{w}|_h : \forall \mathbf{v}, \mathbf{w} \in \mathbf{V}$$

●
$$|v + w|_h^2 + |v - w|_h^2 = |v|_h^2 + |w|_h^2$$
: $\forall v, w \in V$

Definition (deCataldo 98, Berndtsson-Păun 08, Hacon-Popa-Schnell 17)

Let X be a complex manifold and E be a holomorphic vector bundle.

A singular Hermitian metric (sHm) on *E* is a function *h* that associates to any $x \in X$ a singular Hermitian inner product $|-|_{h,x}: E_x \rightarrow [0, +\infty]$ with the following properties:

- **()** $|v|_{h,x} = 0 \Leftrightarrow v = 0$ for almost everywhere x
- ② $|v|_{h,x} < +\infty$: ∀ $v \in E_x$ for almost everywhere *x*
- So For any open U and any $s \in H^0(U, E)$,

$$|s|_h \colon U \to [0, +\infty]$$
; $x \to |s(x)|_{h,x}$

is measurable function.

Definition (Berndtsson-Păun 08, Păun-Takayama 14, Hacon-Popa-Schnell 17)

- A sHm *h* on *E* is *Griffiths seminegative* if the function $\log |u|_h^2$ is plurisubharmonic for any local section *u* of *E*.
- A sHm *h* on *E* is *Griffiths semipositive* if the dual metric $h^* = {}^{t}h^{-1}$ on the dual vector bundle *E*^{*} is Griffiths seminegative.

Definition (Berndtsson-Păun 08, Păun-Takayama 14, Hacon-Popa-Schnell 17)

- A sHm h on E is Griffiths seminegative if the function log |u|²_h is plurisubharmonic for any local section u of E.
- A sHm *h* on *E* is *Griffiths semipositive* if the dual metric $h^* = {}^t h^{-1}$ on the dual vector bundle *E*^{*} is Griffiths seminegative.
 - When h is smooth, h is Griffiths seminegative (in the usual sense) iff log |u|²_h is plurisubharmonic for any local section u of E.
 - If *E* is a line bundle, *h* is Griffiths semipositive sHm iff $\sqrt{-1}\Theta_{E,h} \ge 0$ in the sense of current.

Applications -Viehweg's weakly positivity-

Definition

E is *dd-ample* if there exist x ∈ X, a ∈ N_{>0} and ample line bundle A such that
 Sym^a(E) ⊗ A⁻¹ is globally generated at x.

Applications -Viehweg's weakly positivity-

Definition

- E is *dd-ample* if there exist x ∈ X, a ∈ N_{>0} and ample line bundle A such that
 Sym^a(E) ⊗ A⁻¹ is globally generated at x.
- *E* is pseudo-effective there exist *x* ∈ *X* and ample line bundle *A* such that for any *a* ∈ N_{>0}, there exists *b* ∈ N_{>0} such that Sym^{ab}(*E*) ⊗ *A^b* is globally generated at *x*
 - (Viehweg 83) f_{*}(mK_{X/Y}) is pseudo-effective for any fibration f: X → Y. (In fact f_{*}(mK_{X/Y}) is weakly-positive.)

	Algebraic Geometry	singular Hermitian metric
	$\exists x \in X, \exists A \text{ ample},$	
dd-	∃ <i>a</i> , ∈ ℕ s.t.	
ample	$Sym^{a}(E)\otimes A^{-1}$	
	is globally generated at x	
	$\exists x \in X, \exists A \text{ ample,s.t.}$	
pseudo	$\forall a \in \mathbb{N}, \exists b, \in \mathbb{N}, s.t.$	
effective	$Sym^{ab}(E)\otimes A^{a}$	
	is globally generated at x	

Theorem (I. 18)

E is dd-ample iff there exist a ∈ N_{>0} and an ample line bundle A such that Sym^a(E) ⊗ A⁻¹ has a Griffiths semipositive singular Hermitian metric h. (Moreover h is smooth and Nakano semipositive on Zariski open set.)

Theorem (I. 18)

- E is dd-ample iff there exist a ∈ N_{>0} and an ample line bundle A such that Sym^a(E) ⊗ A⁻¹ has a Griffiths semipositive singular Hermitian metric h. (Moreover h is smooth and Nakano semipositive on Zariski open set.)
- ② E is pseudo-effective iff there exists an ample line bundle A such that Sym^a(E) ⊗ A has a Griffiths semipositive singular Hermitian metric for any a ∈ N_{>0}.

	Algebraic Geometry	singular Hermitian metric
dd- ample	$\exists x \in X, \exists A \text{ ample,} \\ \exists a, \in \mathbb{N} \text{ s.t.} \\ Sym^{a}(E) \otimes A^{-1} \\ \text{is globally generated at } x$	$\exists a, \in \mathbb{N}, \exists A \text{ ample s.t.}$ $Sym^{a}(E) \otimes A^{-1}$ has Griffiths semipositive sHm
pseudo effective	$\exists x \in X, \exists A \text{ ample,s.t.}$ $\forall a \in \mathbb{N}, \exists b, \in \mathbb{N}, \text{ s.t.}$ $Sym^{ab}(E) \otimes A^{a}$ is globally generated at x	∃A ample s.t. $\forall a \in \mathbb{N}$ Sym ^a (E) ⊗ A has Griffith semipositive sHm

Theorem (Păun-Takayama 14)

If E has a Griffith semipositive sHm h, then E is pseudo-effective.

Proof.

 $\forall a \in \mathbb{N}, \forall A \text{ ample, } Sym^{a}(E) \otimes A \text{ has Griffith semipositive } Sym^{a}(h) \otimes h_{A}.$

(Hosono 17) There exists a pseudo-effective vector bundle E such that E does NOT have a Griffith semipositive sHm.

Outlook

Outlook

Find other applications of vector bundles and torsion-free coherent sheaves with sHm.

- vanishing theorems about Ω(log D) (Matsuki et al.)
- Seshadri constants (Lehman-Murayama.)
- Hodge theory (f_{*}(K^m_{X/Y})) is difficult for Hodge Theory but...)
- Application of degeneration problem (*f* : *X* → *Y* is morphism with general type fiber. Does *f*_{*}(*K*^m_{X/Y}) have Griffiths positive singular Hermitian metric? Actually *f*_{*}(*K*^m_{X/Y}) is dd-ample)
- singular Kobayashi Hitchin correspondence (like singular Kähler Einstein...)