Characterization of weakly positive torsion-free coherent sheaves by singular Hermitian metrics

Masataka Iwai

The University of Tokyo

MSJ Autumn Meeting 2018, at Okayama University. September 25, 2018

Theorem (Kodaira 53)

Let X be a compact Kähler manifold and L be a holomorphic line bundle.

Then L is ample if and only if L has a smooth metric with positive curvature.

Theorem (Kodaira 53)

Let X be a compact Kähler manifold and L be a holomorphic line bundle.

Then L is ample if and only if L has a smooth metric with positive curvature.

It is so-called Kodaira embedding Theorem. We can prove this theorem by Kodaira vanishing Theorem. Before the next results...

Before the next results...

- *L* is nef $\stackrel{\text{def}}{\Leftrightarrow} \forall C \subset X$: curve, $L.C \ge 0$
- *L* is big $\stackrel{\text{def}}{\Leftrightarrow} \limsup_{k \to +\infty} \frac{\dim H^0(X, L^{\otimes k})}{k^n} > 0$
- L is pseudo-effective ⇔ For any ample line bundle A and any m ∈ N_{>0}, L^{⊗m} ⊗ A is big.

Before the next results...

- *L* is nef $\stackrel{def}{\Leftrightarrow} \forall C \subset X$: curve, $L.C \ge 0$
- *L* is big $\stackrel{\text{def}}{\Leftrightarrow} \limsup_{k \to +\infty} \frac{\dim H^0(X, L^{\otimes k})}{k^n} > 0$
- L is pseudo-effective ⇔^{def} For any ample line bundle A and any m ∈ N_{>0}, L^{⊗m} ⊗ A is big.

If K_X is nef, we call X is a minimal model.

Theorem (Demailly 92)

- L is nef $\Leftrightarrow \forall \epsilon > 0, \exists h_{\epsilon} \text{ smooth metric, s.t.}$ $\sqrt{-1}\Theta_{L,h_{\epsilon}} + \epsilon \omega \ge 0.$
- L is big ⇔ ∃ε > 0,∃h sHm, s.t. √-1Θ_{L,h} εω ≥ 0 in the sense of current.
- L is pseudo-effective ⇔ ∃h sHm, s.t. √-1Θ_{L,h} ≥ 0 in the sense of current.

We want to show the higher rank analogy of the above theorems of Kodaira and Demailly. However even if E is an ample vector bundle, this problem is difficult.

We want to show the higher rank analogy of the above theorems of Kodaira and Demailly.

However even if E is an ample vector bundle, this problem is difficult.

Conjecture (Griffiths 70)

Let E be an ample vector bundle. Does E have a smooth Griffiths positive metric?

We want to show the higher rank analogy of the above theorems of Kodaira and Demailly.

However even if E is an ample vector bundle, this problem is difficult.

Conjecture (Griffiths 70)

Let E be an ample vector bundle. Does E have a smooth Griffiths positive metric?

Aim

Prove that Kodaira's and Demailly's theorem in the case of vector bundles and torsion-free coherent sheaves with slight modification.

- *X*_{*F*}: the maximal Zariski open set where *F* is locally free.
- $\mathcal{F}|_{X_{\mathcal{F}}}$ is a vector bundle on $X_{\mathcal{F}}$ and $\operatorname{codim}(X \setminus X_{\mathcal{F}}) \ge 2$.

- $X_{\mathcal{F}}$: the maximal Zariski open set where \mathcal{F} is locally free.
- $\mathcal{F}|_{X_{\mathcal{F}}}$ is a vector bundle on $X_{\mathcal{F}}$ and $\operatorname{codim}(X \setminus X_{\mathcal{F}}) \ge 2$.
- we will denote by S^k(F) the k-th symmetric power of F and denote by S^k(F) the double dual of the sheaf of S^k(F).

• \mathcal{F} is weakly positive at $x \in X$ if for any $a \in \mathbb{N}_{>0}$ and for any ample line bundle A, there exists $b \in \mathbb{N}_{>0}$ such that $\widehat{S}^{ab}(\mathcal{F}) \otimes A^b$ is globally generated at x.

- \mathcal{F} is weakly positive at $x \in X$ if for any $a \in \mathbb{N}_{>0}$ and for any ample line bundle A, there exists $b \in \mathbb{N}_{>0}$ such that $\widehat{S}^{ab}(\mathcal{F}) \otimes A^{b}$ is globally generated at x.

- \mathcal{F} is weakly positive at $x \in X$ if for any $a \in \mathbb{N}_{>0}$ and for any ample line bundle A, there exists $b \in \mathbb{N}_{>0}$ such that $\widehat{S}^{ab}(\mathcal{F}) \otimes A^{b}$ is globally generated at x.
- Solution \mathcal{F} is weakly positive in the sense of Viehweg if there exists a Zariski open set $U \subset X$ such that \mathcal{F} is weakly positive at x for any $x \in U$.

- \mathcal{F} is weakly positive at $x \in X$ if for any $a \in \mathbb{N}_{>0}$ and for any ample line bundle A, there exists $b \in \mathbb{N}_{>0}$ such that $\widehat{S}^{ab}(\mathcal{F}) \otimes A^{b}$ is globally generated at x.
- Solution \mathcal{F} is weakly positive in the sense of Viehweg if there exists a Zariski open set $U \subset X$ such that \mathcal{F} is weakly positive at x for any $x \in U$.
 - If E is line bundle, E is weakly positive in the sense of Nakayama ⇔ E is pseudo-effective.
 - (Viehweg 83) f_{*}(mK_{X/Y}) is weakly positive in the sense of Viehweg for any fibration f: X → Y.

Singular Hermitian metrics on torsion-free coherent sheaves

Definition

• The singular Hermitian metric h on \mathcal{F} is a singular Hermitian metric on the vector bundle $\mathcal{F}|_{X_{\mathcal{F}}}$.

Singular Hermitian metrics on torsion-free coherent sheaves

- The singular Hermitian metric h on \mathcal{F} is a singular Hermitian metric on the vector bundle $\mathcal{F}|_{X_{\mathcal{F}}}$.
- A singular Hermitian metric h on F is Griffiths seminegative (or h is seminegatively curved) if h|_{X_F} is Griffiths seminegative.

Singular Hermitian metrics on torsion-free coherent sheaves

- The singular Hermitian metric h on \mathcal{F} is a singular Hermitian metric on the vector bundle $\mathcal{F}|_{X_{\mathcal{F}}}$.
- A singular Hermitian metric h on F is Griffiths seminegative (or h is seminegatively curved) if h|_{X_F} is Griffiths seminegative.
- A singular Hermitian metric h on E is Griffiths semipositive (or h is semipositively curved) if there exists a Griffiths seminegative metric g on \mathcal{F}^*|_{X_F} such that h|_{X_F} = (g|_{X_F})^*

Theorem (Păun-Takayama 14)

If \mathcal{F} has a Griffith semipositive sHm, then \mathcal{F} is weakly positive in the sense of Nakayama.

Theorem (Păun-Takayama 14)

If \mathcal{F} has a Griffith semipositive sHm, then \mathcal{F} is weakly positive in the sense of Nakayama.

(Hosono 17) There exists a weakly positive vector bundle E in the sense of Nakayama such that E does NOT have a Griffith semipositive sHm.

Let X be a smooth projective variety and $\mathcal{F} \neq 0$ be a torsion-free coherent sheaf on X.

O \mathcal{F} is weakly positive in the sense of Nakayama iff

Let X be a smooth projective variety and $\mathcal{F} \neq 0$ be a torsion-free coherent sheaf on X.

• \mathcal{F} is weakly positive in the sense of Nakayama iff there exists an ample line bundle A such that

- \mathcal{F} is weakly positive in the sense of Nakayama iff there exists an ample line bundle A such that
 - *S^k*(*F*) ⊗ A has a Griffiths semipositive singular Hermitian metric for any k ∈ N_{>0}.

- \mathcal{F} is weakly positive in the sense of Nakayama iff there exists an ample line bundle A such that
 - *S^k*(*F*) ⊗ A has a Griffiths semipositive singular Hermitian metric for any k ∈ N_{>0}.
- 2 ${\mathcal F}$ is weakly positive in the sense of Viehweg iff

- \mathcal{F} is weakly positive in the sense of Nakayama iff there exists an ample line bundle A such that
 - *S^k*(*F*) ⊗ A has a Griffiths semipositive singular Hermitian metric for any k ∈ N_{>0}.

- \mathcal{F} is weakly positive in the sense of Nakayama iff there exists an ample line bundle A such that
 - *S^k*(*F*) ⊗ A has a Griffiths semipositive singular Hermitian metric for any k ∈ N_{>0}.

- \mathcal{F} is weakly positive in the sense of Nakayama iff there exists an ample line bundle A such that
 - *S^k*(*F*) ⊗ A has a Griffiths semipositive singular Hermitian metric for any k ∈ N_{>0}.
- - the Lelong number of det h_k at x is less than 2 for any $x \in U$ and any $k \in \mathbb{N}_{>0}$.

• The same things hold when \mathcal{F} is a nef or big vector bundle or a dd-ample sheaf.

Outlook

- The same things hold when \mathcal{F} is a nef or big vector bundle or a dd-ample sheaf.
- We concrete the basic theory of vector bundles and torsion-free coherent sheaves with sHm without using curvature current of sHm (c.f. chapter 5,6 in Demailly's book)

Outlook

- The same things hold when \mathcal{F} is a nef or big vector bundle or a dd-ample sheaf.
- We concrete the basic theory of vector bundles and torsion-free coherent sheaves with sHm without using curvature current of sHm (c.f. chapter 5,6 in Demailly's book)
- Recently Deng studied Kobayashi hyperbolicity of moduli spaces by using Paun-Takayama's result.

Question

Find other applications of vector bundles and torsion-free coherent sheaves with sHm (such as the vanishing theorems about $\Omega(\log D)$, Seshadri constants, hyperbolicity, Hodge theory...).