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Kodaira vanishing

Theorem (Kodaira 53)
Let X be a compact Kähler manifold and L be a holomorphic
line bundle.
Then L is ample if and only if L has a smooth metric with
positive curvature.

It is so-called Kodaira embedding Theorem. We can prove
this theorem by Kodaira vanishing Theorem.
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Before the next results...

L is nef
def
⇔ ∀C ⊂ X : curve,L .C ≥ 0

L is big
def
⇔ lim supk→+∞

dimH0(X ,L⊗k )

kn > 0

L is pseudo-effective
def
⇔ For any ample line bundle A

and any m ∈ N>0, L⊗m ⊗ A is big.
If KX is nef, we call X is a minimal model.
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Theorem (Demailly 92)
L is nef⇔ ∀ε > 0,∃hε smooth metric, s.t.√
−1ΘL ,hε + εω ≥ 0.

L is big⇔ ∃ε > 0,∃h sHm, s.t.
√
−1ΘL ,h − εω ≥ 0 in the

sense of current.
L is pseudo-effective⇔ ∃h sHm, s.t.

√
−1ΘL ,h ≥ 0 in

the sense of current.
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We want to show the higher rank analogy of the above
theorems of Kodaira and Demailly.
However even if E is an ample vector bundle, this problem is
difficult.

Conjecture (Griffiths 70)
Let E be an ample vector bundle. Does E have a smooth
Griffiths positive metric?

Aim
Prove that Kodaira’s and Demailly’s theorem in the case of
vector bundles and torsion-free coherent sheaves with slight
modification.
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vector bundle case -Viehweg’s weakly positivity-

Let X be a smooth projective variety and F , 0 be a
torsion-free coherent sheaf on X .

XF : the maximal Zariski open set where F is locally
free.
F |XF is a vector bundle on XF and codim(X \ XF ) ≥ 2.
we will denote by Sk (F ) the k -th symmetric power of F
and denote by Ŝk (F ) the double dual of the sheaf of
Sk (F ).
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Definition
1 F is weakly positive at x ∈ X if for any a ∈ N>0 and for

any ample line bundle A , there exists b ∈ N>0 such that
Ŝab(F ) ⊗ Ab is globally generated at x.

2 F is weakly positive in the sense of Nakayama if there
exists a point x ∈ X such that F is weakly positive at x.

3 F is weakly positive in the sense of Viehweg if there
exists a Zariski open set U ⊂ X such that F is weakly
positive at x for any x ∈ U.

If E is line bundle,E is weakly positive in the sense of
Nakayama⇔ E is pseudo-effective.
(Viehweg 83) f∗(mKX/Y ) is weakly positive in the sense
of Viehweg for any fibration f : X → Y .
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Singular Hermitian metrics on torsion-free
coherent sheaves

Definition
1 The singular Hermitian metric h on F is a singular

Hermitian metric on the vector bundle F |XF .

2 A singular Hermitian metric h on F is Griffiths
seminegative (or h is seminegatively curved ) if h|XF is
Griffiths seminegative.

3 A singular Hermitian metric h on E is Griffiths
semipositive (or h is semipositively curved) if there
exists a Griffiths seminegative metric g on F ∗|XF such
that h|XF = (g|XF )∗

Masataka Iwai (The Univ. of Tokyo) weakly positive 8 / 11



Singular Hermitian metrics on torsion-free
coherent sheaves

Definition
1 The singular Hermitian metric h on F is a singular

Hermitian metric on the vector bundle F |XF .
2 A singular Hermitian metric h on F is Griffiths

seminegative (or h is seminegatively curved ) if h|XF is
Griffiths seminegative.

3 A singular Hermitian metric h on E is Griffiths
semipositive (or h is semipositively curved) if there
exists a Griffiths seminegative metric g on F ∗|XF such
that h|XF = (g|XF )∗

Masataka Iwai (The Univ. of Tokyo) weakly positive 8 / 11



Singular Hermitian metrics on torsion-free
coherent sheaves

Definition
1 The singular Hermitian metric h on F is a singular

Hermitian metric on the vector bundle F |XF .
2 A singular Hermitian metric h on F is Griffiths

seminegative (or h is seminegatively curved ) if h|XF is
Griffiths seminegative.

3 A singular Hermitian metric h on E is Griffiths
semipositive (or h is semipositively curved) if there
exists a Griffiths seminegative metric g on F ∗|XF such
that h|XF = (g|XF )∗

Masataka Iwai (The Univ. of Tokyo) weakly positive 8 / 11



Theorem (Păun-Takayama 14)
If F has a Griffith semipositive sHm, then F is weakly
positive in the sense of Nakayama.

(Hosono 17) There exists a weakly positive vector bundle E
in the sense of Nakayama such that E does NOT have a
Griffith semipositive sHm.
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Theorem (I. 18)
Let X be a smooth projective variety and F , 0 be a
torsion-free coherent sheaf on X.

1 F is weakly positive in the sense of Nakayama iff there
exists an ample line bundle A such that

Ŝk (F ) ⊗ A has a Griffiths semipositive singular
Hermitian metric for any k ∈ N>0.

2 F is weakly positive in the sense of Viehweg iff there
exist an ample line bundle A and a Zariski open set
U ⊂ X such that

Ŝk (F ) ⊗ A has a Griffiths semipositive singular
Hermitian metric hk for any k ∈ N>0, and
the Lelong number of det hk at x is less than 2 for any
x ∈ U and any k ∈ N>0.
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Ŝk (F ) ⊗ A has a Griffiths semipositive singular
Hermitian metric hk for any k ∈ N>0, and
the Lelong number of det hk at x is less than 2 for any
x ∈ U and any k ∈ N>0.

Masataka Iwai (The Univ. of Tokyo) weakly positive 10 / 11



Theorem (I. 18)
Let X be a smooth projective variety and F , 0 be a
torsion-free coherent sheaf on X.

1 F is weakly positive in the sense of Nakayama iff there
exists an ample line bundle A such that
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Outlook

The same things hold when F is a nef or big vector
bundle or a dd-ample sheaf.

We concrete the basic theory of vector bundles and
torsion-free coherent sheaves with sHm without using
curvature current of sHm (c.f. chapter 5,6 in Demailly’s
book)
Recently Deng studied Kobayashi hyperbolicity of
moduli spaces by using Paun-Takayama’s result.

Question
Find other applications of vector bundles and torsion-free
coherent sheaves with sHm (such as the vanishing theorems
about Ω(log D), Seshadri constants, hyperbolicity, Hodge
theory...).
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