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Theorem (Kodaira 53)
Let X be a compact Kähler manifold and L be a holomorphic
line bundle. Assume L has a smooth metric with positive
curvature. Then for any q ≥ 1

Hq(X ,KX ⊗ L) = 0.

By Kodaira’s vanishing theorem, L is ample if and only if L
has a smooth metric with positive curvature.
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Before the next results...

h is a singular Hermitian metric (sHm) on L
def
⇔ ∃ a smooth metric h0 and ϕ ∈ L1

loc(X) s.t. h = h0e−ϕ

The curvature current
√
−1ΘL ,h B

√
−1ΘL ,h0 +

√
−1∂∂ϕ

for any sHm h.
The multiplier ideal sheaf J(h) of h

J(h)x B {f ∈ OX ,x ;∃U 3 x,
∫

U
|f |2e−ϕdλ < ∞},

where dλ is the standard Lesbegue measure.
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Theorem (Nadel 89. (cf. Demailly 82) )

Let (X , ω) be a compact Kähler manifold and L be a
holomorphic line bundle. Assume h has a sHm on L such
that

√
−1ΘL ,h ≥ εω in the sense of current for some ε ∈ R>0.

Then for any q ≥ 1

Hq(X ,KX ⊗ L ⊗ J(h)) = 0.

By Nadel vanishing theorem, we have Angehrn-Siu’s
theorem (if L is ample line bundle then KX ⊗ L⊗

n(n+1)
2 +1 is

globally generated) and so on.
We can proved Kawamata-Viehweg vanishing theorem
by Nadel vanishing theorem.
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We have many applications by using vanishing theorems.

Aim
Prove that vanishing theorems in more general setting.

More
explicitly...
Prove that for any q ≥ 1 and any vector bundle E,

Hq(X ,KX ⊗ E(h)) = 0

with some assumption (positivity of metric).

h is a sHm of a vector bundle E.
E(h) is a higher rank analogy of multiplier ideal sheaf.
h has ”some positivity”.
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Definition of sHm on vector bundle

We adopt the definition by Hacon,Popa, and Schnell. (This
definition is easy to understand)

Definition (Hacon-Popa-Schnell 17 )
A singular Hermitian inner product on a finite dimensional
complex vector space V is a function | − |h : V → [0,+∞] with
the following properties:

1 |α · v |h = |α||v |h : ∀α ∈ C \ 0,∀v ∈ V
2 |0|h = 0
3 |v + w |h ≤ |v |h + |w |h : ∀v ,w ∈ V
4 |v + w |2h + |v − w |2h = |v |2h + |w |2h : ∀v ,w ∈ V
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Definition (deCataldo 98, Berndtsson-Păun 08,
Hacon-Popa-Schnell 17 )
Let X be a complex manifold and E be a holomorphic vector
bundle.
A singular Hermitian metric (sHm) on E is a function h that
associates to any x ∈ X a singular Hermitian inner product
| − |h,x : Ex → [0,+∞] with the following properties:

1 |v |h,x = 0⇔ v = 0 for almost everywhere x
2 |v |h,x < +∞ : ∀v ∈ Ex for almost everywhere x
3 For any open U and any s ∈ H0(U,E),

|s|h : U → [0,+∞] ; x → |s(x)|h,x

is measurable function.
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Definition (Berndtsson-Păun 08, Păun-Takayama 14,
Hacon-Popa-Schnell 17)

1 A sHm h on E is Griffiths seminegative if the function
log |u|2h is plurisubharmonic for any local section u of E.

2 A sHm h on E is Griffiths semipositive if the dual metric
h∗ = th−1 on the dual vector bundle E∗ is Griffiths
seminegative.

When h is smooth, h is Griffiths seminegative (in the
usual sense) iff log |u|2h is plurisubharmonic for any local
section u of E.
If E is a line bundle, h is Griffiths semipositive sHm iff√
−1ΘE,h ≥ 0 in the sense of current.
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History

(Păun-Takayama 14)
f∗(mKX/Y ) has a Griffith semipositive sHm called
”Narasimhan-Simha” metric for any fibration f : X → Y .

(Cao-Păun 17) Iitaka’s Cn,m conjecture holds if the base
space is an Abelian variety,
(Cao-Höring 17) The structure theorem with nef
anticanonical divisor.
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(Cao-Höring 17) The structure theorem with nef
anticanonical divisor.

Masataka Iwai (The Univ. of Tokyo) Vanishing theorems of VB with sHm 9 / 12



Higher rank analogy of multiplier ideal sheaf

Definition
Let (E, h) be a vector bundle with sHm.
The sheaf of locally square integrable holomorphic sections
of E with respect to h is defined by

E(h)x = {fx ∈ E(x) : |fx |2h ∈ L1
loc} x ∈ X ,

where E(x) the stalk of E at x, defined by lim
−→
x∈U

H0(U,E).

E(h) is a higher rank analogy of a multiplier ideal sheaf.
We don’t know whether this sheaf is coherent.
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Main results

Theorem (I. 18)

Let (X , ω) be a Kähler manifold and (E, h) be a holomorphic
vector bundle on X with a sHm. We assume the following
conditions.

1 There exists a proper analytic subset Z such that h is
smooth on X \ Z.

2 he−ζ is a Griffiths semipositive sHm on E for some
continuous function ζ on X.

3 There exists C ∈ R such that√
−1ΘE,h − Cω ⊗ IdE ≥Nak 0 on X \ Z.

Then the sheaf E(h) is coherent.
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Nadel-Nakano type vanishing theorems

Theorem (I. 18)

Let (X , ω) be a compact Kähler manifold and (E, h) be a
holomorphic vector bundle on X with a sHm. We assume the
following conditions.

1 There exists a proper analytic subset Z such that h is
smooth on X \ Z.

2 he−ζ is a Griffiths semipositive sHm on E for some
continuous function ζ on X.

3 There exists ε ∈ R>0 such that√
−1ΘE,h − εω ⊗ IdE ≥Nak 0 on X \ Z.

Then Hq(X ,KX ⊗ E(h)) = 0 holds for any q ≥ 1.

Moreover, we proved Kollár type injectivity theorems and
Kollár-Ohsawa type vanishing theorems of vector bundles.
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