On the global generation of direct images of pluri-adjoint line bundles

Masataka Iwai

The University of Tokyo

Hayama symposium. July 16, 2018

Conjecture (Fujita's freeness conjecture)

Let X be a smooth projective n-dimensional variety and L be an ample line bundle on X. Is the line bundle $K_X \otimes L^{\otimes n+1}$ globally generated?

Conjecture (Fujita's freeness conjecture)

Let X be a smooth projective n-dimensional variety and L be an ample line bundle on X. Is the line bundle $K_X \otimes L^{\otimes n+1}$ globally generated?

Fujita's freeness conjecture holds

- if *n* = 2 (Reider 88)
- if n = 3 (Ein-Lazarsfeld 93)
- if *n* = 4 (Kawamata 97)
- if *n* = 5 (Ye-Zhu 15)

Conjecture (Fujita's freeness conjecture)

Let X be a smooth projective n-dimensional variety and L be an ample line bundle on X. Is the line bundle $K_X \otimes L^{\otimes n+1}$ globally generated?

Fujita's freeness conjecture holds

• if *n* = 2 (Reider 88)

- if n = 3 (Ein-Lazarsfeld 93)
- if *n* = 4 (Kawamata 97)

• if *n* = 5 (Ye-Zhu 15)

(Angehrn-Siu 95) $K_X \otimes L^{\otimes b}$ is globally generated for any $b \ge \frac{n(n+1)}{2} + 1$.

Conjecture (Popa-Schnell 14)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y. For any $a \ge 1$, is the sheaf

 $f_*(K_X^{\otimes a})\otimes L^{\otimes b}$

globally generated for all $b \ge a(n+1)$?

If X = Y and f is an identity map, Popa-Schnell conjecture implies Fujita's freeness conjecture.

• (Popa-Schnell 14) If *L* is ample and globally generated, this conjecture holds.

- (Popa-Schnell 14) If *L* is ample and globally generated, this conjecture holds.
- (Dutta 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ a(ⁿ⁽ⁿ⁺¹⁾/₂ + 1).
- (Dutta 17) If f is smooth, $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$ is globally generated on Y for all $b \ge a(\frac{n(n+1)}{2} + 1)$.

- (Popa-Schnell 14) If *L* is ample and globally generated, this conjecture holds.
- (Dutta 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ a(ⁿ⁽ⁿ⁺¹⁾/₂ + 1).
- (Dutta 17) If f is smooth, f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is globally generated on Y for all b ≥ a(ⁿ⁽ⁿ⁺¹⁾/₂ + 1).
- (Deng 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ n² − n + a(n + 1).

- (Popa-Schnell 14) If *L* is ample and globally generated, this conjecture holds.
- (Dutta 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ a(ⁿ⁽ⁿ⁺¹⁾/₂ + 1).
- (Dutta 17) If f is smooth, f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is globally generated on Y for all b ≥ a(ⁿ⁽ⁿ⁺¹⁾/₂ + 1).
- (Deng 17) f_{*}(K^{⊗a}_X) ⊗ L^{⊗b} is generated by the global sections at a general point y ∈ Y for all b ≥ n² n + a(n + 1).

Even if (X, Δ) is a Kawamata log terminal \mathbb{Q} -pair of a normal projective variety and an effective divisor, their results hold, that is, $f_*(O_X(a(K_X + \Delta))) \otimes L^{\otimes b}$ is generated by the global sections at a **general point** $y \in Y$.

Theorem (I.17)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y.

If y is a **regular value** of f, then for any $a \ge 1$ the sheaf

 $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$

is generated by the global sections at y for all $b \ge \frac{n(n-1)}{2} + a(n+1).$

Theorem (I.17)

Let $f: X \to Y$ be a surjective morphism of smooth projective varieties, with Y of dimension n, and L be an ample line bundle on Y.

If y is a **regular value** of f, then for any $a \ge 1$ the sheaf

 $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$

is generated by the global sections at y for all $b \ge \frac{n(n-1)}{2} + a(n+1)$.

By using result, if *f* is smooth, $f_*(K_X^{\otimes a}) \otimes L^{\otimes b}$ is globally generated on *Y* for all $b \ge \frac{n(n-1)}{2} + a(n+1)$.

Theorem (I.17, Dutta-Murayama 17)

Let (X, Δ) be a Kawamata log terminal \mathbb{Q} -pair of a normal projective variety and an effective divisor, and Y be a smooth projective n-dimensional variety.

Let $f: X \rightarrow Y$ be a surjective morphism, and L be an ample line bundle on Y.

For any $a \ge 1$ such that $a(K_X + \Delta)$ is an integral Cartier divisor, the sheaf

$$f_*(O_X(a(K_X + \Delta))) \otimes L^{\otimes b}$$

is generated by the global sections at a general point $y \in Y$ for all $b \ge \frac{n(n-1)}{2} + a(n+1)$

$$s \in H^0(X_y, K_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y})$$

can be extended to X.

$$s \in H^0(X_y, K_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y})$$

can be extended to X.

 We take a good singular Hermitian metric into K_X^{⊗a-1} ⊗ f^{*}(L^{⊗b}).

$$s \in H^0(X_y, K_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y})$$

can be extended to X.

- We take a good singular Hermitian metric into K_X^{⊗a-1} ⊗ f^{*}(L^{⊗b}).
- There exists a neighborhood V ∋ y and a section S_V on f⁻¹(V) such that S_V|_{X_y} = s.(by using relative version of Ohsawa-Takegoshi L² extension.)

$$s \in H^0(X_y, K_{X_y}^{\otimes a} \otimes f^*(L)^{\otimes b}|_{X_y})$$

can be extended to X.

- We take a good singular Hermitian metric into K_X^{⊗a-1} ⊗ f^{*}(L^{⊗b}).
- There exists a neighborhood V ∋ y and a section S_V on f⁻¹(V) such that S_V|_{X_y} = s.(by using relative version of Ohsawa-Takegoshi L² extension.)
- We solve a $\overline{\partial}$ -equation to extend the section S_V .