幾何学 1 演義 2025 年 11 月 14 日

6 微分形式の引き戻し

多様体のあいだの写像 $F: M \to N$ に対し, $F^*: \Omega^k(N) \to \Omega^k(M)$ が線型写像であることを確かめる. $F^*(\omega + \eta) = F^*\omega + F^*\eta$ および $F^*(c\omega) = cF^*\omega$ を示したいのだが,たとえば前者が意味するのは,任意の点 $p \in M$ に対し $(F^*(\omega + \eta))_p = (F^*\omega)_p + (F^*\eta)_p$ が成立するということである. そこで実際に任意の $v_1, v_2, \dots, v_k \in T_pM$ を代入してみる. すると

$$\begin{split} (F^*(\omega+\eta))_p(\upsilon_1,\upsilon_2,\ldots,\upsilon_k) &= (\omega+\eta)_{F(p)}((F_*)_p\upsilon_1,(F_*)_p\upsilon_2,\ldots,(F_*)_p\upsilon_k) \\ &= \omega_{F(p)}((F_*)_p\upsilon_1,(F_*)_p\upsilon_2,\ldots,(F_*)_p\upsilon_k) + \eta_{F(p)}((F_*)_p\upsilon_1,(F_*)_p\upsilon_2,\ldots,(F_*)_p\upsilon_k) \\ &= (F^*\omega)_p(\upsilon_1,\upsilon_2,\ldots,\upsilon_k) + (F^*\eta)_p(\upsilon_1,\upsilon_2,\ldots,\upsilon_k) \end{split}$$

だから $(F^*(\omega + \eta))_p = (F^*\omega)_p + (F^*\eta)_p$ がわかった. もう一つの式についても同様.

- 30. $F: M \to N$ とする. $\omega \in \Omega^k(N)$, $f \in C^{\infty}(N)$ に対し $F^*(f\omega) = (f \circ F)F^*\omega$ を示せ.
- 31. $F: M \to N$ とする. $\omega \in \Omega^k(N), \ \eta \in \Omega^l(N)$ に対し $F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$ を示せ.
- 32. $F: M \to N, G: N \to L$ およびそれらの合成 $G \circ F: M \to L$ について,各々に対応する微分形式の引き戻し写像が $(G \circ F)^* = F^* \circ G^*$ をみたすことを示せ.

次は引き戻しのごく簡単な計算練習.

- 33. $F: \mathbb{R}^2 \to \mathbb{R}^2$ を $F(x,y) = (x^2 y^2, 2xy)$ により定める.
 - (1) *F* はどのような写像か. 初等幾何学的に説明せよ.
 - (2) 終域の標準的な座標系を (X,Y) と書き、 $\omega = dX \wedge dY$ とおく. $F^*\omega$ を求めよ.

次の問題では,一般に n 次元実ベクトル空間上の交代的な n 重線形形式 $\mu \in \bigwedge^n V^*$ について, $\mu \neq 0$ ならば V の任意の基底 v_1, v_2, \dots, v_n について $\mu(v_1, v_2, \dots, v_n) \neq 0$ であることを用いてよい.

- 34. \mathbb{R}^4 の微分 1 形式 $\omega = -y\,dx + x\,dy w\,dz + z\,dw$ を S^3 へと引き戻して得られる微分 1 形式 $\omega|_{S^3}$ を θ と書く*. θ が S^3 上の接触形式(問題 26)であること,すなわち $\eta = \theta \wedge d\theta \in \Omega^3(S^3)$ が nowhere vanishing であることを確かめたい.
 - (1) \mathbb{R}^4 において $\tilde{\eta} = \omega \wedge d\omega$ と定める. $\tilde{\eta}|_{\mathfrak{S}^3} = \eta$ を示せ.
 - (2) \mathbb{R}^4 で定義された関数 $h = x^2 + y^2 + z^2 + w^2$ を考える(S^3 は h のレベル集合 $h^{-1}(1)$ である). $dh \wedge \tilde{\eta}$ が $\mathbb{R}^4 \setminus \{0\}$ で nowhere vanishing であることを確かめよ.
 - (3) η が S^3 で nowhere vanishing であることを結論せよ.

^{*}今後ずっと、とくに断らないかぎり、 S^{n-1} はすべて \mathbb{R}^n の原点を中心とする単位球面とする.

次は円周 S^1 の微分1形式について実感をもつための問題である.

 $\gamma(t)=(\cos t,\sin t)$ で定義される曲線 $\gamma:\mathbb{R}\to S^1$ を考える. S^1 上の各点 p に対し、 $\gamma(t_0)=p$ をみたす時刻 $t_0\in\mathbb{R}$ をとり、その時刻における速度ベクトルを

$$X_p = \left. \frac{d\gamma}{dt} \right|_{t=t_0}$$

と書くことにして、ベクトル場 $X = \{X_p\}_{p \in S^1}$ を定義する.

与えられた $p \in S^1$ に対し $\gamma(t_0) = p$ をみたす t_0 は一意的でなく, $2m\pi$ (m は整数)を加える任意性がある.しかし,どの t_0 を採用しても X_p は同じである.そのことは,たとえば,点 p の開近傍で定義された関数 f への作用が一致することをみればわかる.

$$\left.\frac{d\gamma}{dt}\right|_{t=t_0}(f) = \frac{d(f\circ\gamma)}{dt}(t_0), \qquad \left.\frac{d\gamma}{dt}\right|_{t=t_0+2m\pi}(f) = \frac{d(f\circ\gamma)}{dt}(t_0+2m\pi)$$

であるが、関数 $f \circ \gamma$ は周期 2π をもつので右辺同士は等しい.

- 35. S^1 上の微分 1 形式 $\alpha = \{\alpha_p\}_{p \in S^1}$ を $\alpha_p(X_p) = 1$ と定めることで定義する $(X_p$ はこの接べクトル 1 個だけで接空間 T_pS^1 の基底をなすので, $\alpha_p \in T_p^*S^1$ を定めるには X_p に対する値だけを決めればよい).
 - (1) $\gamma: \mathbb{R} \to S^1$ による α の引き戻し $\gamma^*\alpha$ を求めよ.
 - (2) $\mathbb{R}^2 \setminus \{(0,0)\}$ の微分 1 形式

$$\omega = \frac{-y\,dx + x\,dy}{x^2 + y^2}$$

を考える (問題 5). ω の S^1 への引き戻し $\omega|_{S^1}$ が α に等しいことを示せ.

36. $\gamma: \mathbb{R} \to S^1$ の $[0,2\pi]$ への制限を γ_1 として、線形写像 $I: \Omega^1(S^1) \to \mathbb{R}$ を線積分(問題 16)により

$$I(\omega) = \int_{\gamma_1} \omega$$

と定義する. 前問の α は各点 $p\in S^1$ において $\alpha_p\neq 0$ をみたすので, $\dim T_p^*S^1=1$ に注意すれば,任意の $\omega\in\Omega^1(S^1)$ はある $\varphi\in C^\infty(S^1)$ を用いて $\omega=\varphi\alpha$ とあらわせる. そうしたとき上式の右辺を線積分の定義にもとづき書き換えると

$$I(\omega) = \int_0^{2\pi} (\varphi \circ \gamma)(t) dt$$

となる.

- (1) $\omega \in \Omega^1(S^1)$ が完全形式ならば $\omega \in \ker I$ であることを示せ.
- (2) 逆に、 $\omega \in \ker I$ ならば ω は完全形式であることを示せ. $[ヒント: もし<math>\omega = df$ ならば $\gamma^*\omega = d(\gamma^*f) = d(f \circ \gamma)$ となるはずなので、 $\gamma^*\omega = dg$ をみたす関数 $g \in C^\infty(\mathbb{R})$ について考察する.]
- (3) $H^1_{dR}(S^1) \cong \mathbb{R}$ を示せ.