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12 微分形式の積分 (2)

61. 𝑀 は多様体，𝐶 は𝑀 に埋めこまれた部分多様体で，微分同相写像 𝐹∶ 𝑆1 → 𝐶 が与
えられているとする（つまり，𝐶はいわば“𝑀に埋めこまれた円周 𝑆1”である）．曲線
𝛾∶ [0, 2𝜋] → 𝑀 を 𝛾(𝑡) = 𝐹(cos 𝑡, sin 𝑡)により定める．そのとき，𝑀 の任意の微分 1
形式 𝜔に対し

∫
𝐶
𝜔 =∫

𝛾
𝜔

であることを示せ（右辺は問題 16で定義した線積分）．ただし，𝐶 には 𝑆1 の標準的な
向きに対応する向きを与える．

62. 問題 58 を Stokes の定理を用いて解け．［おわび：問題 58 では ℝ3 ⧵ { 0 } において
𝜔 = 𝑥 𝑑𝑦 ∧ 𝑑𝑧 + 𝑦 𝑑𝑧 ∧ 𝑑𝑥 + 𝑧 𝑑𝑥 ∧ 𝑑𝑦という微分形式を考えると書きましたが，この
𝜔はℝ3全体で問題なく定義されていることに注意してください．］

63. 𝑀 を向きづけられた 𝑛次元閉多様体*，𝑁 を任意の多様体として，𝜔 ∈ Ω𝑛(𝑁)を閉
微分 𝑛形式とする．𝐹，𝐺 を互いに 𝐶∞ホモトピックな𝑀 から 𝑁 への 2つの写像とす
るとき，

∫
𝑀
𝐹∗𝜔 =∫

𝑀
𝐺∗𝜔

であることを示せ．［ヒント：𝐹と 𝐺のあいだの 𝐶∞ホモトピー Φ∶ 𝑀 × [0, 1]→ 𝑁を
とり，𝑀 × [0, 1]という境界つき多様体上で 𝑑(Φ∗𝜔)を積分する．または，向きづけら
れた 𝑛次元閉多様体𝑀について

𝐻𝑛
dR(𝑀)→ ℝ, [𝜔] ↦,→∫

𝑀
𝜔

が well-definedな線形写像を与えることを示し，講義の定理 7.1と組み合わせる．］

問題 63の結果において𝑀 = 𝑆1 とすれば（さらに問題 61も念頭におくと），閉微分 1形式の閉曲線に
沿った線積分の 𝐶∞ ホモトピー不変性が得られる．これは問題 11（の多様体版）の閉曲線版といえる．
問題 11（の多様体版）そのものは，問題 63のヒントに挙げた 2つの方針のうち前者を真似ることにして，
「角つき多様体に関する Stokesの定理」†を利用すれば証明できる．詳細は各自の検討に任せる．

*境界をもたないコンパクト多様体のことを，しばしば一言で閉多様体（closed manifold）とよぶ．
†J. M. Lee, Introduction to Smooth Manifolds, Springerの Theorem 16.25．



𝑀 を向きづけ可能な連結 𝑛次元閉多様体とすれば 𝐻𝑛
dR(𝑀) ≅ ℝである（Poincaré双対性の特別な場

合．問題 54の直前の注意でもふれた）．したがって，任意の（𝐶∞級）写像 𝐹∶ 𝑀 → 𝑀に対し，線形写
像 𝐹∗ ∶ 𝐻𝑛

dR(𝑀) → 𝐻𝑛
dR(𝑀)は与えられた 𝐻𝑛

dR(𝑀)の元を定数倍する写像にすぎない．その倍率のこと
を 𝐹 の写像度といい deg(𝐹)で表す．実は deg(𝐹)は整数である．次元の等しい 2つの向きづけ可能な連
結閉多様体𝑀，𝑁のあいだの写像 𝐹∶ 𝑀 → 𝑁についても写像度を定義できるが，ここでは扱わない．

64. 𝑆1 ⊂ ℂとみて，𝐹𝑘 ∶ 𝑆1 → 𝑆1 を 𝑧 ↦,→ 𝑧𝑘 により定める．𝐹𝑘 の写像度を求めよ．［ヒ
ント：問題 35の 𝛼を使って計算できる．］

65. 𝑆2を Riemann球面 ℂ̂と同一視し，𝐹∶ ℂ→ ℂ，𝐹(𝑧) = 𝑧2を連続に拡張することで
𝐹∶ 𝑆2 → 𝑆2を定義する．𝐹の写像度を求めよ．［ヒント：結論は 2．直観的には，定義
域が 𝐹を通じて終域をだいたい 2重に覆うからである．積分を使うのがいいと思う．］

次の問題の (3)はハードな計算を要する．何時間，あるいは何日かかったとしても完遂できたら自信を
もってよい．（ℂℙ1 の Fubini–Study形式について知っていれば計算はだいぶ見通しがよくなる．）

66. 𝑖∶ 𝑆2 → ℝ3を包含写像として

𝜔 = 1
4𝜋 ⋅ 𝑖∗(𝑥 𝑑𝑦 ∧ 𝑑𝑧 + 𝑦 𝑑𝑧 ∧ 𝑑𝑥 + 𝑧 𝑑𝑥 ∧ 𝑑𝑦)

とおく（係数 1∕4𝜋 は積分が 1 となるようにつけた）．任意の写像 𝐹∶ 𝑆3 → 𝑆2 に対
し，𝐹∗𝜔は 𝑆3 上の閉 2形式だから，𝐻2

dR(𝑆
3) = 0とあわせると，𝐹∗𝜔 = 𝑑𝜂 をみたす

𝜂 ∈ Ω1(𝑆3)が存在することがわかる．（𝜂は一意的ではない．）
(1) 𝐻(𝐹) =∫

𝑆3
𝜂 ∧ 𝑑𝜂の値が 𝜂の選び方に依存しないことを示せ（Hopf不変量）．

(2) 2つの写像 𝐹，𝐺 ∶ 𝑆3 → 𝑆2 が互いに 𝐶∞ ホモトピックならば 𝐻(𝐹) = 𝐻(𝐺)で
あることを示せ．［ヒント：両者のあいだの 𝐶∞ホモトピー Φ∶ 𝑆3 × [0, 1]→ 𝑆2を
とる．Φを 𝐶∞ 級写像 𝑆3 × ℝ → 𝑆2 に拡張しておき，Φ∗𝜔 = 𝑑𝜂 と表す．ここで
写像 𝜄𝑡 ∶ 𝑆3 → 𝑆3 ×ℝ，𝑝 ↦,→ (𝑝, 𝑡)を考えると，𝐹∗𝜔 = 𝑑𝜄∗0𝜂，𝐺∗𝜔 = 𝑑𝜄∗1𝜂である．
Stokesの定理を用いて𝐻(𝐺) −𝐻(𝐹)を 𝑆3 × [0, 1]における積分として表せ．］

(3) 𝑆3をℂ2の単位球面とみなして，自然な射影ℂ2 ⧵ { 0 }→ ℂℙ1を 𝑆3に制限したも
のを 𝐹1 と書く．ℂℙ1 を 𝑆2 と同一視すれば 𝐹1∶ 𝑆3 → 𝑆2 である（Hopf写像）．適
当にとった同一視のもとで，𝐹1は具体的には

𝐹1(𝑥, 𝑦, 𝑧, 𝑤) = (2(𝑥𝑧 + 𝑦𝑤), 2(𝑦𝑧 − 𝑥𝑤), 𝑧2 + 𝑤2 − 𝑥2 − 𝑦2)

で与えられる（𝑆3 を ℝ4 の部分集合とみて，ℝ4 の標準座標を用いて書いたのが上
の式）．𝐻(𝐹1)の値を求め，𝐹1が定値写像に 𝐶∞ホモトピックではないことを示せ．

通常の（連続写像を用いて定義する）ホモトピーがもし存在すれば，修正して 𝐶∞ホモトピーにできる．
よって 𝐹1 は定値写像にホモトピックでもない．とくに 𝜋3(𝑆2)は自明でない．実は 𝜋3(𝑆2) ≅ ℤである．


