9 ユークリッド空間の位相

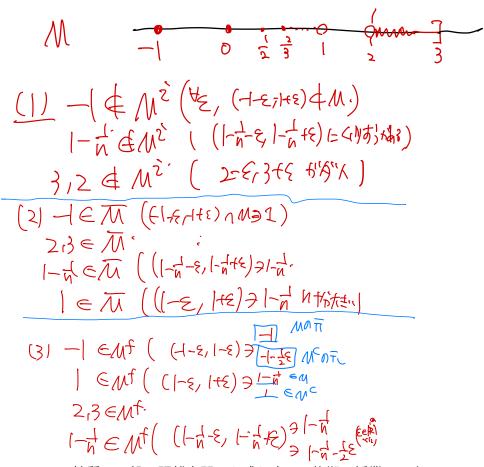
学籍番号: 名前

 \mathbb{R} を実数の集合, \mathbb{R}^n を \mathbb{R} の n 個の直積とする.

1. $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}$ について、ユークリッド距離 $d^{(n)}$ を以下で定める.

$$d^{(n)}(x,y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

2. $a \in \mathbb{R}^n$, $\varepsilon > 0$ について, $B_n(a, \varepsilon) := \{x \in \mathbb{R}^n \ d^{(n)}(a, x) < \varepsilon\}$ を a を中心とし ε を半径と



上の $\mathcal{O}(\mathbb{R}^n)$ の性質は一般の距離空間でも成り立つ. 後期の授業では上の $\mathcal{O}(\mathbb{R}^n)$ の性質を逆手にとって、一般の集合 X について位相空間 (X,\mathcal{O}) を定義する.

問題 1. ℝ の部分集合

$$M = \{-1\} \cup (2,3] \cup \left\{1 - \frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\right\}$$

について以下を求めよ. ただし ℝ にはユークリッド距離を入れる.

(1)M の内部 $M^i (= M^\circ)$ 解答欄:

(2)M の閉包 $\overline{M}(=M^a)$ 解答欄: $\{-1\}$ ひにお $[n \in M \setminus So]$ [n]

(3)M の境界 $M^f (= \partial M)$ 解答欄: $\{-\lfloor \lfloor \lfloor \lfloor 2 \rfloor \rfloor\}\}$ 以 $\{-\lfloor \lfloor \lfloor \lfloor 2 \rfloor \rfloor\}\}$ 以 $\{-\lfloor \lfloor \lfloor \lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor \lfloor \lfloor \lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor \lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \}\}$ の $\{-\lfloor 2 \rfloor \}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor \}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の $\{-\lfloor 2 \rfloor\}$ の $\{-\lfloor 2 \rfloor\}\}$ の

問題 $2. \mathbb{R}^2$ の部分集合 \mathbb{Q}^2 について、以下を求めよ、ただし \mathbb{R}^2 にはユークリッド距離を入れる.

(1) \mathbb{Q}^2 の内部 解答欄: \mathbb{R}^2 解答欄: \mathbb{R}^2 解答欄: \mathbb{R}^2

問題 3. 「部分集合 $M\subset\mathbb{R}^n$ が閉集合ならば $M^c=\mathbb{R}^n\setminus M$ は開集合である.」この主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] M が閉集合であると仮定する. M^c が開集合を示す. つまり M^c = M^c) を示せば良い. は常に成り立つので逆の包含を示す. $x \in M^c$ とする. 今 M は閉集合なので, $y \in M$ について, $M \in \mathcal{S}$ $\varepsilon > 0$ について, $B_n(y,\varepsilon) \cap M$ $\varepsilon > 0$ となる.

ある $\varepsilon > 0$ があって $B_n(x, \varepsilon) \subset M^c$ が成り立つ

ため $x \in (M^c)^i$ となる. よって M^c が開集合である.

- 語句群 ·

ある 任意の \subset \supset \in $\not\in$ = $\not=$ $M^c = \overline{M^c}$ $M^c \supset \overline{M^c}$ $M^c = (M^c)^i$ $(M^c)^i \subset M^c$ $(M^c)^i \supset M^c$

問題 4. 「部分集合 $M\subset\mathbb{R}^n$ が開集合ならば $M^c=\mathbb{R}^n\setminus M$ は閉集合である.」この主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] M が開集合であると仮定する. M^c が閉集合を示す. つまり M^c を示せば良い.

$$\varnothing$$
 $B_n(x,\varepsilon) \cap M^c \subset M \cap M^c = \varnothing$

となり矛盾. よって M^c は閉集合である.

語句群 -

ある 任意の \subset \supset \in $\not\in$ = $\not=$ $M^c = \overline{M^c}$ $M^c \supset \overline{M^c}$ $M^c = (M^c)^i$ $(M^c)^i \subset M^c$ $(M^c)^i \supset M^c$

[補足] 問題 3.4 の主張は後の距離空間でも成り立つ.